Skip to main content
Log in

Photochemical Processes of Cell DNA Damage by UV Radiation of Various Wavelengths: Biological Consequences

  • REVIEWS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Photochemical reactions in cell DNA are induced in various organisms by solar UV radiation and may lead to a series of biological responses to DNA damage, including apoptosis, mutagenesis, and carcinogenesis. The chemical nature and the amount of DNA lesions depend on the wavelength of UV radiation. UV type B (UVB, 290–320 nm) causes two main lesions, cyclobutane pyrimidine dimers (CPDs) and, with a lower yield, pyrimidine (6-4) pyrimidone photoproducts (6-4PPs). Their formation is a result of direct UVB photon absorption by DNA bases. UV type A (UVA, 320–400 nm) induces only cyclobutane dimers, which most likely arise via triplet–triplet energy transfer (TTET) from cell chromophores to DNA thymine bases. UVA is much more effective than UVB in inducing sensitized oxidative DNA lesions, such as single-strand breaks and oxidized bases. Of the latter, 8-oxo-dihydroguanine (8-oxodG) is the most frequent, being produced in several oxidation processes. Many recent studies reported novel, more detailed information about the molecular mechanisms of the photochemical reactions that underlie the formation of various DNA lesions. The information is mostly summarized and analyzed in the review. Special attention is paid to the oxidation reactions that are initiated by reactive oxygen species (ROS) and radicals generated by potential endogenous photosensitizers, such as pterins, riboflavin, protoporphyrin IX, NADH, and melanin. The review discusses the role that specific DNA photoproducts play in genotoxic processes induced in living systems by UV radiation of various wavelengths, including human skin carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Pfeifer G.P., Besaratinia A. 2012. UV wavelength-dependent DNA damage and human non-melanoma and melanoma skin cancer. Photochem. Photobiol. Sci. 11, 90–97.

    Article  CAS  PubMed  Google Scholar 

  2. Fraikin G.Ya. 2018. Signaling mechanisms regulating diverse plant cell responses to UVB radiation. Biochemistry (Moscow). 83, 787–794.

  3. Cadet J., Douki T. 2018. Formation of UV-induced DNA damage contributing to skin cancer development. Photochem. Photobiol. Sci. 17, 1816–1841.

    Article  CAS  PubMed  Google Scholar 

  4. Mullenders L.H.F. 2018. Solar UV damage to cellular DNA: From mechanisms to biological effects. Photochem. Photobiol. Sci. 17, 1842–1852.

    Article  CAS  PubMed  Google Scholar 

  5. Schuch A.P., Moreno N.C., Schuch N.J., Menck C.F.M., Garcia C.C.M. 2017. Sunlight damage to cellular DNA: Focus on oxidatively generated lesions. Free Radical Biol. Med. 107, 110–124.

    Article  CAS  Google Scholar 

  6. Wondrak G.T., Jacobson M.K., Jacobson E.L. 2006. Endogenous UVA-photosensitizers: Mediators of skin photodamage and novel targets for skin photoprotection. Photochem. Photobiol. Sci. 5, 215–237.

    Article  CAS  PubMed  Google Scholar 

  7. Cadet J., Mouret S., Ravanat J.-L., Douki T. 2012. Photoinduced damage to cellular DNA: Direct and photosensitized reactions. Photochem. Photobiol. 88, 1048–1065.

    Article  CAS  PubMed  Google Scholar 

  8. Hu J., Adebali O., Adar S., Sancar A. 2017. Dynamic maps of UV damage formation and repair for the human genome. Proc. Natl. Acad. Sci. U. S. A. 114, 6758–6763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Johann to Berens P., Molinier J. 2020. Formation and recognition of UV-induced DNA damage within genome complexity. Int. J. Mol. Sci. 21, 6689.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Moan J., Porojnicu A.C., Dahiback A. 2008. Ultraviolet radiation and malignant melanoma. Adv. Exp. Med. Biol. 624, 104–116.

    Article  PubMed  Google Scholar 

  11. Ting W., Schultz K., Cac N.N., Peterson M., Walling H.W. 2007. Tanning bed exposure increases the risk of malignant melanoma. Int. J. Dermatol. 46, 1253–1257.

    Article  PubMed  Google Scholar 

  12. Cadet J., Douki T., Ravanat J.-L. 2015. Oxidatively generated damage to cellular DNA by UVB and UVA radiation. Photochem. Photobiol. 91, 140–155.

    Article  CAS  PubMed  Google Scholar 

  13. Fraikin G.Ya. 2016. Molecular Mechanisms of Destructive, Protective and Regulatory Photobiological Processes. Moscow: AP-Konsalt.

    Google Scholar 

  14. Schreier W.J., Gilch P., Zinth W. 2015. Early events of DNA photodamage. Annu. Rev. Phys. Chem. 66, 497–519.

    Article  CAS  PubMed  Google Scholar 

  15. Martinez-Fernandez L., Improta R. 2018. Sequence dependence on DNA photochemistry: A computational study of photodimerization pathways in TpdC and dCpT dinucleotides. Photochem. Photobiol. Sci. 17, 586–591.

    Article  CAS  PubMed  Google Scholar 

  16. Schreier W.J., Kubon J., Regner N., Haiser K., Schrader T.E., Zinth W., Clivio P., Gilch P. 2009. Thymine dimerization in DNA model systems: Cyclobutane photolesion is predominantly formed via the singlet channel. J. Am. Chem. Soc. 131, 5038–5039.

    Article  CAS  PubMed  Google Scholar 

  17. Pilles B.M., Bucher D.B., Liu L., Clivio P., Zinth W., Schreier W.J. 2014. Mechanism of the decay of thymine triplets in DNA single strands. J. Phys. Chem. Lett. 5, 1616–1622.

    Article  CAS  PubMed  Google Scholar 

  18. Liu L., Pilles B.M., Gontcharov J., Bucher D.B., Zinth W. 2016. Quantum yield of cyclobutane pyrimidine dimer formation via the triplet channel determined by photosensitization. J. Phys. Chem. B. 120, 292–298.

    Article  CAS  PubMed  Google Scholar 

  19. Douki T., Berard I., Wack A., Andra S. 2014. Contribution of cytosine-containing cyclobutane dimers to DNA damage produced by photosensitized triplet−triplet energy transfer. Chem. Eur. J. 20, 5787–5794.

    Article  CAS  PubMed  Google Scholar 

  20. Markovitsi D. 2016. UV-induced DNA damage: The role of electronic excited states. Photochem. Photobiol. 92, 45–51.

    Article  CAS  PubMed  Google Scholar 

  21. Chung L.H., Murray V. 2018. An extended sequence specificity for UV-induced DNA damage. J. Photochem. Photobiol. B: Biol. 178, 133–142.

    Article  CAS  Google Scholar 

  22. Cuquerella M.C., Lhiaubet-Vallet V., Cadet J., Miranda M.A. 2012. Benzophenone photosensitized DNA damage. Acc. Chem. Res. 45, 1558–1570.

    Article  CAS  PubMed  Google Scholar 

  23. Aparici-Espert I., Garcia-Lainez G., Andreu I., Miranda M.A., Lhiaubet-Vallet V. 2018. Oxidatively generated lesions as internal photosensitizers for pyrimidine dimerization in DNA. ACS Chem. Biol. 13, 542–547.

    Article  CAS  PubMed  Google Scholar 

  24. Frances-Monerris A., Hognon C., Miranda M.A., Lhiaubet-Vallet V., Monari A. 2018. Triplet photosensitization mechanism of thymine by an oxidized nucleobase: From a dimeric model to DNA environment. Phys. Chem. Chem. Phys. 20, 25666–25675.

    Article  CAS  PubMed  Google Scholar 

  25. Frances-Monerris A., Lineros-Rosa M., Miranda M.A., Lhiaubet-Vallet V., Monari A. 2020. Photoinduced intersystem crossing in DNA oxidative lesions and epigenetic intermediates. Chem. Commun. 56, 4404–4407.

    Article  CAS  Google Scholar 

  26. Vendrell-Criado V., Rodriguez-Muniz G.M., Lhiaubet-Vallet V., Cuquerella M.C., Miranda M.A. 2016. The (6−4) dimeric lesion as a DNA photosensitizer. Chem. Phys. Chem. 17, 1979–1982.

    Article  CAS  PubMed  Google Scholar 

  27. Douki T. 2020. Pyrimidine (6−4) pyrimidone photoproducts in UVA-irradiated DNA: Photosensitization or photoisomerization? ChemPhotoChem. 4, 294–299.

    Article  CAS  Google Scholar 

  28. Gontcharov J., Liu L., Pilles B.M., Carell T., Schreier W.J., Zinth W. 2019. Triplet-induced lesion formation at CpT and TpC sites in DNA. Chem. Eur. J. 25, 15164–15172.

    Article  CAS  PubMed  Google Scholar 

  29. Lee W., Matsika S. 2020. Stabilization of the triplet biradical intermediate of 5-methylcytosine enhances cyclobutane pyrimidine dimer (CPD) formation in DNA. Chem. Eur. J. 26, 14181–14186.

    Article  CAS  PubMed  Google Scholar 

  30. Baptista M.S., Cadet J., Di Mascio P., Ghogare A.A., Greer A., Hamblin M.R., Lorente C., Nunez S.C., Ribeiro M.S., Thomas A.H., Vignoni M., Yoshimura T.M. 2017. Type I and type II photosensitized oxidation reactions: Guidelines and mechanistic pathways. Photochem. Photobiol. 93, 912–919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cadet J., Loft S., Olinski R., Evans D., Bialkowski K., Wagner J.R., Dedon P.C., Moller P., Greenberg M.M., Cooke M.S. 2012. Biologically relevant oxidants and terminology, classification and nomenclature of oxidatively generated damage to nucleobases and 2-deoxyribose in nucleic acids. Free. Radical Res. 46, 367–381.

    Article  CAS  Google Scholar 

  32. Baptista M.S., Cadet J., Greer A., Thomas A.H. 2021. Photosensitization reactions of biomolecules: Definition, targets and mechanisms. Photochem. Photobiol. 97, 1456–1483.

    Article  CAS  PubMed  Google Scholar 

  33. Krasnovsky A.A., Jr. 2004. Photodynamic action and singlet oxygen. Biophysics (Moscow). 49, 289–306.

    Google Scholar 

  34. DiMascio P., Martinez G.R., Miyamoto S., Ronsein G.E., Medeiros M.H.G., Cadet J. 2019. Singlet molecular oxygen reactions with nucleic acids, lipids, and proteins. Chem. Rev. 119, 2043–2086.

    Article  CAS  Google Scholar 

  35. Dumont E., Gruber R., Bignon E., Morell C., Moreau Y., Monari A., Ravanat J.-L. 2016. Probing the reactivity of singlet oxygen with purines. Nucleic Acids Res. 44, 56–62.

    Article  CAS  PubMed  Google Scholar 

  36. Ravanat J.-L., Dumont E. 2022. Reactivity of singlet oxygen with DNA, an update. Photochem. Photobiol. 98, 564–571.

    Article  CAS  PubMed  Google Scholar 

  37. Cadet J., Douki T., Ravanat J.-L. 2008. Oxidatively generated damage to the guanine moiety: Mechanistic aspects and formation in cells. Acc. Chem. Res. 41, 1074–1081.

    Article  Google Scholar 

  38. Cadet J., Douki T., Ravanat J. 2010. Oxidatively generated damage to DNA. Free Radical Biol. Med. 49, 9–21.

    Article  CAS  Google Scholar 

  39. Fraikin G.Ya., Belenikina N.S., Rubin A.B. 2018. Damaging and defense processes induced in plant cells by UVB radiation. Biol. Bull. (Moscow). 45, 519–527.

    Article  Google Scholar 

  40. Cadet J., Douki T., Ravanat J.-L., Di Mascio P. 2009. Sensitized formation of oxidatively generated damage to cellular DNA by UVA radiation. Photochem. Photobiol. Sci. 8, 903–911.

    Article  CAS  PubMed  Google Scholar 

  41. Cadet J., Douki T. 2011. Oxidatively generated damage to DNA by UVA radiation in cells and human skin. J. Invest. Dermatol. 131, 1005–1007.

    Article  CAS  PubMed  Google Scholar 

  42. Cadet J., Wagner J.R. 2014. Oxidatively generated base damage to cellular DNA by hydroxyl radical and one-electron oxidants: Similarities and differences. Arch. Biochem. Biophys. 557, 47–54.

    Article  CAS  PubMed  Google Scholar 

  43. Ravanat J.-L., Cadet J., Douki T. 2012. Oxidatively generated DNA lesions as potential biomarkers of in vivo oxidative stress. Curr. Mol. Med. 12, 655–671.

    Article  CAS  PubMed  Google Scholar 

  44. Cadet J., Davies K.J.A., Medeiros M.H., Di Mascio P., Wagner J.R. 2017. Formation and repair of oxidatively generated damage in cellular DNA. Free Radical Biol. Med. 107, 13–34.

    Article  CAS  Google Scholar 

  45. Cadet J., Douki T. 2011. Measurement of oxidatively generated base damage in cellular DNA. Mutat. Res. 711, 3–12.

    Article  CAS  PubMed  Google Scholar 

  46. Pelle E., Huang X., Mammone T., Marenus K., Maes D., Frenkel K. 2003. Ultraviolet-B-induced oxidative DNA base damage in primary normal human epidermal keratinocytes and inhibition by a hydroxyl radical scavenger. J. Invest. Dermatol. 121, 177–183.

    Article  CAS  PubMed  Google Scholar 

  47. Greenberg M.M. 2012. The formamidopyrimidines: Purine lesions formed in competition with 8-oxopurines from oxidative stress. Acc. Chem. Res. 45, 588–597.

    Article  CAS  PubMed  Google Scholar 

  48. Rokhlenko Y., Cadet J., Geacintov N.E., Shafirovich V. 2014. Mechanistic aspects of hydration of guanine radical cations in DNA. J. Am. Chem. Soc. 136, 5956–5962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cadet J., Wagner J.R., Shafirovich V., Geacintov N.E. 2014. One-electron oxidation reactions of purine and pyrimidine bases in cellular DNA. Int. J. Radiat. Biol. 90, 423–432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Aroun A., Zhong J.L., Tyrrell R.M., Pourzand C. 2012. Iron, oxidative stress and the example of solar ultraviolet A-radiation. Photochem. Photobiol. Sci. 11, 118–134.

    Article  CAS  PubMed  Google Scholar 

  51. Sander C.S., Chang H., Hamm F., Elsner P., Thiele J.J. 2004. Role of oxidative stress and the antioxidant network in cutaneous carcinogenesis. Int. J. Dermatol. 43, 326–335.

    Article  CAS  PubMed  Google Scholar 

  52. Fraikin G.Ya., Strakhovskaya M.G., Rubin A.B. 2000. Light-induced processes of cell protection against photodamage. Biochemistry (Moscow). 65, 737–746.

    CAS  PubMed  Google Scholar 

  53. Strakhovskaya M.G., Shumarina A.O., Fraikin G.Ya., Rubin A.B. 1999. Endogenous porphyrin accumulation and photosensitization in the yeast Saccharomyces cerevisiae in the presence of 2,2'-dipyridyl. J. Photochem. Photobiol. B: Biol. 49, 18–22.

    Article  CAS  Google Scholar 

  54. Shumarina A.O., Strakhovskaya M.G., Turovetskii V.B., Fraikin G.Ya. 2003. Photodynamic damage to yeast subcellular organelles induced by elevated levels of endogenous protoporphyrin IX. Microbiology. 72, 434–437.

    Article  CAS  Google Scholar 

  55. Fraikin G.Ya., Strakhovskaya M.G., Pinyaskina E.V.1995. Localization of a porphyrin-type compound in yeast plasma membranes and its involvement in photosensitization of lipid peroxidation. Biochemistry (Moscow). 60, 877–880.

    Google Scholar 

  56. Fraikin G.Ya., Strakhovskaya M.G., Rubin A.B. 1996. The role of membrane-bound porphyrin-type compound as endogenous sensitizer in photodynamic damage to yeast plasma membranes. J. Photochem. Photobiol. B: Biol. 34, 129–135.

    Article  CAS  Google Scholar 

  57. Strakhovskaya M.G., Shumarina A.O., Fraikin G.Ya., Rubin A.B. 2002. Fluorescence photobleaching of endogenous protoporphyrin IX in Saccharomyces cerevisiae cells. Biophysics. 47, 791–796.

    Google Scholar 

  58. Blair I.A. 2008. DNA adducts with lipid peroxidation products. J. Biol. Chem. 283, 15545–15549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fraikin G.Ya., Strakhovskaya M.G., Rubin A.B. 2013. Biological photoreceptors of light-dependent regulatory processes. Biochemistry (Moscow).78, 1238–1253.

    CAS  PubMed  Google Scholar 

  60. Vechtomova Y.L., Telegina T.A., Kritsky M.S. 2020. Evolution of proteins of the DNA photolyase/cryptochrome family. Biochemistry (Moscow). 85 (Suppl. 1), S131–S153.

    PubMed  Google Scholar 

  61. Fraikin G.Ya. 2022. Photosensory and signaling properties of cryptochromes. Mosc. Univ. Biol. Sci. Bull. 77, 54–63.

    Article  CAS  Google Scholar 

  62. Fuentes-Lemus E., Mariotti M., Reyes J., Leinisch F., Hagglund P., Silva E., Davies M.J., Lopez-Alarcon C. 2020. Photooxidation of lysozyme triggered by riboflavin is O2-dependent, occurs via mixed type 1 and type 2 pathways, and results in inactivation, site-specific damage and intra-and inter-molecular cross-links. Free Radical Biol. Med. 152, 61–73.

    Article  CAS  Google Scholar 

  63. Perrier S., Hau J., Gasparutto D., Cadet J., Favier A., Ravanat J.-L. 2006. Characterization of lysine-guanine cross-links upon one-electron oxidation of a guanine-containing oligonucleotide in the presence of a trilysine peptide. J. Am. Chem. Soc. 128, 5703–5710.

    Article  CAS  PubMed  Google Scholar 

  64. Bignon E., Chan C.H., Morell C., Monari A., Ravanat J.-L., Dumont E. 2017. Molecular dynamics insights into polyamine-DNA binding modes: Implications for cross-link selectivity. Chemistry. 23, 12845–12852.

    Article  CAS  PubMed  Google Scholar 

  65. Chan C.H., Monari A., Ravanat J.-L., Dumont E. 2019. Probing interaction of a trilysine peptide with DNA underlying formation of guanine-lysine cross-links: Insights from molecular dynamics. Phys. Chem. Chem. Phys. 21, 23418–23424.

    Article  CAS  PubMed  Google Scholar 

  66. Ito K., Inoue S., Yamamoto K., Kawanishi S. 1993. 8-Hydroxydeoxyguanosine formation at the 5'-site of 5'-GG-3' sequences in double-stranded DNA by UV radiation with riboflavin. J. Biol. Chem. 268, 13221–13227.

    Article  CAS  PubMed  Google Scholar 

  67. Yamamoto F., Nashimura S., Kasai H. 1992. Photosensitized formation of 8-hydroxydeoxyguanosine in cellular DNA by riboflavin. Biochem. Biophys. Res. Commun. 187, 809–813.

    Article  CAS  PubMed  Google Scholar 

  68. Oliveros E., Dantola M.L., Vignoni M., Thomas A.H., Lorente C. 2011. Production and quenching of reactive oxygen species by pterin derivatives, an intriguing class of biomolecules. Pure Appl. Chem. 83, 801–811.

    Article  CAS  Google Scholar 

  69. Rokos H., Beazley W.D., Schallreuter K.U. 2002. Oxidative stress in vitiligo: Photo-oxidation of pterins produces H2O2 and pterin-6-carboxylic acid. Biochem. Biophys. Res. Commun. 292, 805–811.

    Article  CAS  PubMed  Google Scholar 

  70. Buglak A.A., Telegina T.A., Lyudnikova T.A., Vechtomova Y.L., Kritsky M.S. 2014. Photooxidation of tetrahydrobiopterin under UV irradiation: Possible pathways and mechanisms. Photochem. Photobiol. 90, 1017–1026.

    Article  CAS  PubMed  Google Scholar 

  71. Buglak A.A., Telegina T.A., Vechtomova Y.L., Kritsky M.S. 2021. Autooxidation and photooxidation of tetrahydrobiopterin: A theoretical study. Free Radical Res. 55, 499–509.

    Article  CAS  Google Scholar 

  72. Thomas A.H., Lorente C., Capparelli A.L., Martinez C.G., Braun A.M., Oliveros E. 2003. Singlet oxygen (1Δg) production by pterin derivatives in aqueous solutions. Photochem. Photobiol. Sci. 2, 245–250.

    Article  CAS  PubMed  Google Scholar 

  73. Buglak A.A., Telegina T.A., Kritsky M.S. 2016. A quantitative structure-property relationship (QSPR) study of singlet oxygen generation by pteridines. Photochem. Photobiol. Sci. 15, 801–811.

    Article  CAS  PubMed  Google Scholar 

  74. Dantola M.L., Vignoni M., Gonzalez C., Lorente C., Vicendo P., Oliveros E., Thomas A.H. 2010. Electron-transfer processes induced by the triplet state of pterins in aqueous solutions. Free Radical Biol. Med. 49, 1014–1022.

    Article  CAS  Google Scholar 

  75. Vignoni M., Cabrerizo F.M., Lorente C., Thomas A.H. 2009. New results on the photochemistry of biopterin and neopterin in aqueous solution. Photochem. Photobiol. 85, 365–373.

    Article  CAS  PubMed  Google Scholar 

  76. Vignoni M., Salum M.L., Erra-Balsells R., Thomas A.H., Cabrerizo F.M. 2010. 1H NMR characterization of the intermediate formed upon UV-A excitation of biopterin, neopterin and 6-hydroxymethylpterin in O2-free aqueous solutions. Chem. Phys. Lett. 484, 330–332.

    Article  CAS  Google Scholar 

  77. Dantola M.L., Reid L.O., Castano C., Lorente C., Oliveros E., Thomas A.H. 2017. Photosensitization of peptides and proteins by pterin derivatives. Pteridines. 28, 105–114.

    Article  CAS  Google Scholar 

  78. Lorente C., Serrano M.P., Vignoni M., Dantola M.L., Thomas A.H. 2021. A model to understand type I oxidations of biomolecules photosensitized by pterins. J. Photochem. Photobiol. 7, 100045.

    Article  Google Scholar 

  79. Ito K., Kawanishi S. 1997. Photoinduced hydroxylation of deoxyguanosine in DNA by pterins: Sequence specificity and mechanism. Biochemistry. 36, 1774–1781.

    Article  CAS  PubMed  Google Scholar 

  80. Hirakawa K., Suzuki H., Oikawa S., Kawanishi S. 2003. Sequence-specific DNA damage induced by ultraviolet A-irradiated folic acid via its photolysis product. Arch. Biochem. Biophys. 410, 261–268.

    Article  CAS  PubMed  Google Scholar 

  81. Petroselli G., Dantola M.L., Cabrerizo F.M., Capparelli A.L., Lorente C., Oliveros E., Thomas A.H. 2008. Oxidation of 2'-deoxyguanosine 5'-monophosphate photoinduced by pterin: Type I versus type II mechanism. J. Am. Chem. Soc. 130, 3001–3011.

    Article  CAS  PubMed  Google Scholar 

  82. Serrano M.P., Lorente C., Vieyra F.E.M., Borsarelli C.D., Thomas A.H. 2012. Photosensitizing properties of biopterin and its photoproducts using 2'-deoxyguanosine 5'-monophosphate as an oxidizable target. Phys. Chem. Chem. Phys. 14, 11657–11665.

    Article  CAS  PubMed  Google Scholar 

  83. Serrano M.P., Lorente C., Borsarelli C.D., Thomas A.H. 2015. Unraveling the degradation mechanism of purine nucleotides photosensitized by pterins: The role of charge-transfer steps. ChemPhysChem. 16, 2244–2252.

    Article  CAS  PubMed  Google Scholar 

  84. Serrano M.P., Vignoni M., Lorente C., Vicendo P., Oliveros E., Thomas A.H. 2016. Thymidine radical formation via one-electron transfer oxidation photoinduced by pterin: Mechanism and products characterization. Free Radical Biol. Med. 96, 418–431.

    Article  CAS  Google Scholar 

  85. Estebanez S., Lorente C., Tosato M.G., Miranda M.A., Marin M.L., Lhiaubet-Vallet V., Thomas A.H. 2019. Photochemical formation of a fluorescent thymidine–pterin adduct in DNA. Dyes Pigments. 160, 624–632.

    Article  CAS  Google Scholar 

  86. Burchuladze T.G., Fraikin G.Ya. 1991. A study of the mechanism of the NADH-sensitized formation of breaks in DNA during irradiation with near-UV light. Mol. Biol. (Moscow). 25, 748–752.

    Google Scholar 

  87. Lytvyn D.I., Yemets A.I., Blume Y.B. 2010. UV-B overexposure induces programmed cell death in a BY-2 tobacco cell line. Environ. Exp. Bot. 68, 51–57.

    Article  CAS  Google Scholar 

  88. Nawkar G.M., Maibam P., Park J.H., Sahi V.P., Lee S.Y., Kang C.H. 2013. UV-induced cell death in plants. Int. J. Mol. Sci. 14, 1608–1628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Takahashi S., Kojo K.H., Kutsuna N., Endo M., Toki S., Isoda H., Hasezawa S. 2015. Differential responses to high- and low-dose ultraviolet-B stress in tobacco Bright Yellow-2 cells. Front. Plant Sci. 6, 1–10.

    Article  Google Scholar 

  90. Yoshiyama K., Kobayashi J., Ogita N., Ueda M., Kimura S., Maki H., Umeda M. 2013. ATM-mediated phosphorylation of SOG1 is essential for the DNA damage response in Arabidopsis. EMBO Rep. 14, 817–822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Halliday G.M., Cadet J. 2012. It’s all about position: The basal layer of human epidermis is particularly susceptible to different types of sunlight-induced DNA damage. J. Invest. Dermatol. 132, 265–267.

    Article  CAS  PubMed  Google Scholar 

  92. Tewari A., Grage M.M.L., Harrison G.I., Sarkany R., Young A.R. 2013. UVA1 is skin deep: Molecular and clinical implications. Photochem. Photobiol. Sci. 12, 95–103.

    Article  CAS  PubMed  Google Scholar 

  93. Delinasios G.J., Karbaschi M., Cooke M.S., Young A.R. 2018. Vitamin E inhibits the UVA1 induction of “light” and “dark” cyclobutane pyrimidine dimers, and oxidatively generated DNA damage, in keratinocytes. Sci. Rep. 8, 423.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Lawrence K.P., Douki T., Sarkany R.P.E., Acker S., Herzog B., Young A.R. 2018. The UV/Visible radiation boundary region (385–405 nm) damages skin cells and induces “dark” cyclobutane pyrimidine dimers in human skin in vivo. Science. 8, 12722.

    Google Scholar 

  95. Mouret S., Forestier A., Douki T. 2012. The specificity of UVA-induced DNA damage in human melanocytes. Photochem. Photobiol. Sci. 11, 155–162.

    Article  CAS  PubMed  Google Scholar 

  96. Noonan F.P., Zaidi M.R., Wolnicka-Glubisz A., Anver M.R., Bahn J., Wielgus A., Cadet J., Douki T., Mouret S., Tucker M.A., Popratiloff A., Merlino G., De Fabo E.C. 2012. Melanoma induction by ultraviolet A but not ultraviolet B requires melanin pigment. Nat. Commun. 3, 884.

    Article  PubMed  Google Scholar 

  97. Premi S., Wallisch S., Mano C.M., Weiner A.B., Bacchiocchi N., Wakamatsu K., Bechara E.J., Halaban R., Douki T., Brash D.E. 2015. Photochemistry. Chemiexcitation of melanin derivatives induces DNA photoproducts long after UV exposure. Science. 347, 842–847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Premi S., Brash D.E. 2016. Unanticipated role of melanin in causing carcinogenic cyclobutane pyrimidine dimers. Mol. Cell. Oncol. 3, e1033588.

    Article  PubMed  Google Scholar 

  99. Premi S., Brash D.E. 2016. Chemical excitation of electrons: A dark path to melanoma. DNA Repair (Amsterdam). 44, 169–177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fajuyigbe D., Douki T., van Dijk A., Sarkany R.P.E., Young A.R. 2021. Dark cyclobutane pyrimidine dimers are formed in the epidermis of Fizpatrick skin types I/II and VI in vivo after exposure to solar-simulated radiation. Pigment Cell Melanoma Res. 34, 575–584.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by a state contract with Moscow State University (no. 121032500058-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ya. Fraikin.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Translated by T. Tkacheva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: UVA, ultraviolet A (320–400 nm); UVB, ultra-violet B (290–320 nm); CPD, cyclobutane pyrimidine dimer; 6-4PP, pyrimidine (6-4) pyrimidone photoproduct; 8‑oxodG, 8-oxo-dihydroguanine; Ptr, pterin; Fop, 6‑formylpterin; Cap, 6-carboxypterin; Nep, neopterin; Bip, biopterin; H2Bip, 7,8-dihydrobiopterin; H4Bip, 5,6,7,8-tetrahydrobiopterin; PCD, programmed cell death; ROS, reactive oxygen species; TTET, triplet–triplet energy transfer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fraikin, G.Y., Belenikina, N.S. & Rubin, A.B. Photochemical Processes of Cell DNA Damage by UV Radiation of Various Wavelengths: Biological Consequences. Mol Biol 58, 1–16 (2024). https://doi.org/10.1134/S0026893324010047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893324010047

Keywords:

Navigation