Skip to main content
Log in

High-order nonstandard finite difference methods preserving dynamical properties of one-dimensional dynamical systems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this work, we introduce a simple and efficient approach for constructing dynamically consistent and high-order nonstandard finite difference (NSFD) methods for a class of nonlinear dynamical systems. These high-order NSFD methods are derived from a novel weighted non-local approximation of the right-hand side functions and the renormalization of nonstandard denominator functions. It is proved by rigorous mathematical analysis that the NSFD methods can be accurate of arbitrary order and preserve two essential mathematical features including the positivity and asymptotic stability of the dynamical systems under consideration for all finite values of the step size. In the constructed NSFD methods, the weighted non-local approximation guarantees the dynamic consistency and the renormalized nonstandard denominator functions ensure that the proposed NSFD methods are accurate of arbitrary order. The obtained results resolve the contradiction between the dynamic consistency and high-order accuracy of NSFD schemes and hence, improve several well-known results focusing on NSFD methods for differential equations. Finally, illustrative numerical examples are reported to support the theoretical findings and to show advantages of the high-order NSFD methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of supporting data

The data supporting the findings of this study are available within the article [and/or] its supplementary materials.

References

  1. Allen, L.J.S.: An Introduction to Mathematical Biology. Prentice Hall (2007)

    Google Scholar 

  2. Anguelov, R., Lubuma, J.M.-S.: Contributions to the mathematics of the nonstandard finite difference method and applications. Numer. Methods Partial Differ. Equ. 17, 518–543 (2001)

    Article  MathSciNet  Google Scholar 

  3. Anguelov, R., Lubuma, J.M.-S.: Nonstandard finite difference method by nonlocal approximation. Math. Comput. Simul. 61, 465–475 (2003)

    Article  MathSciNet  Google Scholar 

  4. Ascher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. Society for Industrial and Applied Mathematics, Philadelphia (1998)

    Book  Google Scholar 

  5. Burden, R.L., Douglas Faires, F.: Numerical Analysis, Ninth edition Cengage Learning (2015)

  6. Chen-Charpentier, B.M., Dimitrov, D.T., Kojouharov, H.V.: Combined nonstandard numerical methods for ODEs with polynomial right-hand sides. Math. Comput. Simul. 73, 105–113 (2006)

    Article  MathSciNet  Google Scholar 

  7. Cooke, K., van den Driessche, P., Zou, X.: Interaction of maturation delay and nonlinear birth in population and epidemic models. J. Math. Biol. 39, 332–352 (1999)

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  8. Cresson, J., Pierret, F.: Non standard finite difference scheme preserving dynamical properties. J. Comput. Appl. Math. 303, 15–30 (2016)

    Article  MathSciNet  Google Scholar 

  9. Cresson, J., Szafrańska, A.: Discrete and continuous fractional persistence problems - the positivity property and applications. Commun. Nonlinear Sci. Numer. Simul. 44, 424–448 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  10. Dang, Q.A., Hoang, M.T.: Positive and elementary stable explicit nonstandard Runge-Kutta methods for a class of autonomous dynamical systems. Int. J. Comput. Math. 97, 2036–2054 (2020)

    Article  MathSciNet  Google Scholar 

  11. Dimitrov, D.T., Kojouharov, H.V.: Nonstandard finite-difference schemes for general two-dimensional autonomous dynamical systems. Appl. Math. Lett. 18, 769–774 (2005)

    Article  MathSciNet  Google Scholar 

  12. Elaydi, S.: An Introduction to Difference Equations. Springer, New York (2005)

    Google Scholar 

  13. Fatoorehchi, H., Ehrhardt, M.: Numerical and semi-numerical solutions of a modified Thévenin model for calculating terminal voltage of battery cells. J. Energy Storag 45, 103746 (2022)

    Article  Google Scholar 

  14. Gonzalez-Parra, G., Arenas, A.J., Chen-Charpentier, B.M.: Combination of nonstandard schemes and Richardson’s extrapolation to improve the numerical solution of population models. Math. Comput. Model. 52, 1030–1036 (2010)

    Article  MathSciNet  Google Scholar 

  15. Gupta, M., Slezak, J.M., Alalhareth, F., Roy, S., Kojouharov, H.V.: Second-order nonstandard explicit Euler method. AIP Conf. Proc 2302, 110003 (2020)

    Article  Google Scholar 

  16. Hoang, M.T.: A novel second-order nonstandard finite difference method for solving one-dimensional autonomous dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 114, 106654 (2022)

    Article  MathSciNet  Google Scholar 

  17. Hoang, M.T.: A class of second-order and dynamically consistent nonstandard finite difference schemes for nonlinear Volterra’s population growth model. Comput. Appl. Math. 42, 85 (2023)

    Article  MathSciNet  Google Scholar 

  18. Hoang, M.T.: A novel second-order nonstandard finite difference method preserving dynamical properties of a general single-species model. Int. J. Comput. Math. 100, 2047–2062 (2023)

    Article  MathSciNet  Google Scholar 

  19. Hoang, M.T., Ehrhardt, M.: A second-order nonstandard finite difference method for a general Rosenzweig-MacArthur predator-prey model. J. Comput. Appl. Math. 44, 115752 (2024)

    Article  MathSciNet  Google Scholar 

  20. Hoang, M.T., Ehrhardt, M.: A general class of second-order \(L\)-stable explicit numerical methods for stiff problems. Appl. Math. Lett. 149, 108897 (2024)

    Article  MathSciNet  Google Scholar 

  21. Horváth, Z.: Positivity of Runge-Kutta and diagonally split Runge-Kutta methods, AApplied. Numer. Math. 28, 309–326 (1998)

    Article  MathSciNet  Google Scholar 

  22. Jiang, Z., Zhang, W.: Bifurcation analysis in single-species population model with delay. Sci. China Math. 53, 1475–1481 (2010)

    Article  MathSciNet  Google Scholar 

  23. Kojouharov, H.V., Roy, S., Gupta, M., Alalhareth, F., Slezak, J.M.: A second-order modified nonstandard theta method for one-dimensional autonomous differential equations. Appl. Math. Lett. 112, 106775 (2021)

    Article  MathSciNet  Google Scholar 

  24. Martin-Vaquero, J., Martin del Rey, A., Encinas, A.H., Hernandez Guillen, J.D., Queiruga-Dios, A., Rodriguez Sanchez, G.: Higher-order nonstandard finite difference schemes for a MSEIR model for a malware propagation. J. Comput. Appl. Math. 317, 146–156 (2017)

    Article  MathSciNet  Google Scholar 

  25. Martin-Vaquero, J., Queiruga-Dios, A., Martin del Rey, A., Encinas, A.H., Hernandez Guillen, J.D., Rodriguez Sanchez, G.: Variable step length algorithms with high-order extrapolated non-standard finite difference schemes for a SEIR model. J. Comput. Appl. Math. 330, 848–854 (2018)

    Article  MathSciNet  Google Scholar 

  26. Mickens, R.E.: Nonstandard Finite Difference Models of Differential Equations, World Scientific,(1993)

  27. Mickens, R. E.: Applications of Nonstandard Finite Difference Schemes, World Scientific, (2000)

  28. Mickens, R. E.: Advances in the Applications of Nonstandard Finite Difference Schemes, World Scientific, (2005)

  29. Mickens, R. E.: Nonstandard Finite Difference Schemes: Methodology and Applications, World Scientific, (2020)

  30. Mickens, R.E.: Dynamic consistency: a fundamental principle for constructing nonstandard finite difference schemes for differential equations. J. Differ. Equ. Appl. 11, 645–653 (2005)

    Article  MathSciNet  Google Scholar 

  31. Mickens, R.E.: Nonstandard finite difference schemes for differential equations. J. Differ. Equ. Appl. 8, 823–847 (2002)

    Article  MathSciNet  Google Scholar 

  32. Mickens, R.E.: Discretizations of nonlinear differential equations using explicit nonstandard methods. J. Comput. Appl. Math. 110, 181–185 (1999)

    Article  MathSciNet  Google Scholar 

  33. Mickens, R.E., Washington, T.M.: NSFD discretizations of interacting population models satisfying conservation laws. Comput. Math. Appl. 66, 2307–231 (2013)

    Article  MathSciNet  Google Scholar 

  34. Patidar, K.C.: On the use of nonstandard finite difference methods. J. Differ. Equ. Appl. 11, 735–758 (2005)

    Article  MathSciNet  Google Scholar 

  35. Patidar, K.C.: Nonstandard finite difference methods: recent trends and further developments. J. Differ. Equ. Appl. 22, 817–849 (2016)

    Article  MathSciNet  Google Scholar 

  36. Smith, H. L., Waltman, P.: The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge University Press, (1995)

  37. Stuart, A., Humphries, A. R.: Dynamical systems and numerical analysis, Cambridge University Press, (1998)

  38. Sun, Z., Lv, J., Zou, X.: Dynamical analysis on two stochastic single-species models. Appl. Math. Lett. 99, 105982 (2020)

    Article  MathSciNet  Google Scholar 

  39. Wood, D.T., Kojouharov, H.V.: A class of nonstandard numerical methods for autonomous dynamical systems. Appl. Math. Lett. 50, 78–82 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank the editor and the anonymous reviewer and referee for their useful and valuable comments, which led to a great improvement of the paper.

Author information

Authors and Affiliations

Authors

Contributions

Manh Tuan Hoang: conceptualization, methodology, software, formal analysis, writing — original draft preparation, methodology, writing — review and editing, supervision.

Corresponding author

Correspondence to Manh Tuan Hoang.

Ethics declarations

Ethics approval

Not applicable

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoang, M.T. High-order nonstandard finite difference methods preserving dynamical properties of one-dimensional dynamical systems. Numer Algor (2024). https://doi.org/10.1007/s11075-024-01792-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11075-024-01792-1

Keywords

Mathematics Subject Classification (2010)

Navigation