Skip to main content
Log in

Digitalisierung und Clinical Decision Tools

Digitalization and clinical decision tools

  • Schwerpunkt
  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

Die Digitalisierung in der Akutkardiologie entwickelt sich – analog zur Entwicklung in der Medizin – mit hoher Geschwindigkeit und wird unterstützt durch eine immer breitere Verfügbarkeit digitaler Strukturen und eine bessere Vernetzung der Informationstechnologiesysteme. Mögliche Anwendungen in der Versorgung von Patienten mit akutem Thoraxschmerz beginnen bereits in der prähospitalen Phase durch Übertragung des digitalen Elektrokardiogramms (EKG), aber auch durch telemedizinische Unterstützung und digitales Notfallmanagement, die zur Optimierung der Rettungswege und zur Verkürzung kritischer Zeitintervalle dienen. Die zunehmende Verbreitung und Akzeptanz von Leitlinien-Apps und klinischen Entscheidungshilfen sowie eingebetteten Kalkulatoren und elektronischen Scores helfen, die Leitlinienadhärenz und somit die Versorgungsqualität und Prognose zu verbessern. Insbesondere die Unterstützung der Bildanalyse, aber auch die Voraussage interventionsbedürftiger Koronarstenosen oder zukünftiger Koronarereignisse wie Herzinfarkt oder Tod haben ein enormes Potenzial, zumal die konventionellen Instrumente häufig suboptimale Ergebnisse liefern. Allerdings bestehen derzeit Barrieren in der schnellen Verbreitung entsprechender Entscheidungshilfen: Zulassungsrechtliche Vorschriften für Medizinprodukte, Datenschutzbestimmungen und weitere haftungsrechtliche Aspekte sind zu beachten.

Abstract

Digitalization in cardiovascular emergencies is rapidly evolving, analogous to the development in medicine, driven by the increasingly broader availability of digital structures and improved networks, electronic health records and the interconnectivity of systems. The potential use of digital health in patients with acute chest pain starts even in the prehospital phase with the transmission of a digital electrocardiogram (ECG) as well as telemedical support and digital emergency management, which facilitate optimization of the rescue pathways and reduce critical time intervals. The increasing dissemination and acceptance of guideline apps and clinical decision support tools as well as integrated calculators and electronic scores are anticipated to improve guideline adherence, translating into a better quality of treatment and improved outcomes. Implementation of artificial intelligence to support image analysis and also the prediction of coronary artery stenosis requiring interventional treatment or impending cardiovascular events, such as heart attacks or death, have an enormous potential especially as conventional instruments frequently yield suboptimal results; however, there are barriers to the rapid dissemination of corresponding decision aids, such as the regulatory rules related to approval as a medical product, data protection issues and other legal liability aspects, which must be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Meder B, Duncker D, Helms TM et al (2023) eCardiology: ein strukturierter Ansatz zur Förderung der digitalen Transformation in der Kardiologie. Kardiologie 17:12–26. https://doi.org/10.1007/s12181-022-00584-y

    Article  Google Scholar 

  2. Cowie MR, Bax J, Bruining N et al (2016) e‑Health: a position statement of the European Society of Cardiology. Eur Heart J 37(1):63–66. https://doi.org/10.1093/eurheartj/ehv416

    Article  PubMed  Google Scholar 

  3. Eder PA, Soda H, Kumle B et al (2023) Digitales Notfallmanagement im Netzwerk der Akut- und Notfallversorgung. Eckpunktepapier des Expertenrats des ZTM. Notfall Rettungsmed. https://doi.org/10.1007/s10049-023-01241-x

    Article  Google Scholar 

  4. Helms TM, Stockburger M, Köhler F et al (2019) Grundlegende Strukturmerkmale eines kardiologischen Telemedizinzentrums für Patienten mit Herzinsuffizienz und implantierten Devices, Herzrhythmusstörungen und erhöhtem Risiko für den plötzlichen Herztod. Herzschr Elektrophys 30:136–142. https://doi.org/10.1007/s00399-018-0606-7

    Article  CAS  Google Scholar 

  5. Muhlestein JB, Anderson JL, Bethea CF et al (2020) Feasibility of combining serial smartphone single-lead electrocardiograms for the diagnosis of ST-elevation myocardial infarction: smartphone ECG for STEMI Diagnosis. Am Heart J 221:125–135

    Article  PubMed  Google Scholar 

  6. Spaccarotella CAM, Polimeni A, Migliarino S et al (2020) Multichannel electrocardiograms obtained by a smartwatch for the diagnosis of ST-segment changes. JAMA Cardiol 5:1176–1180

    Article  PubMed Central  PubMed  Google Scholar 

  7. Byrne RA, Rossello X, Coughlan JJ et al (2023) 2023 ESC Guidelines for the management of acute coronary syndromes. Eur Heart J 44(38):3720–3826. https://doi.org/10.1093/eurheartj/ehad191

    Article  CAS  PubMed  Google Scholar 

  8. Quinn T, Johnsen S, Gale CP et al (2014) Effects of prehospital 12-lead ECG on processes of care and mortality in acute coronary syndrome: a linked cohort study from the Myocardial Ischaemia National Audit Project. Heart 100(12):944–950. https://doi.org/10.1136/heartjnl-2013-304599

    Article  PubMed  Google Scholar 

  9. Ravn-Fischer A, Karlsson T, Johanson P, Herlitz J (2013) Prehospital ECG signs of acute coronary occlusion are associated with reduced one-year mortality. Int J Cardiol 168(4):3594–3598. https://doi.org/10.1016/j.ijcard.2013.05.064

    Article  PubMed  Google Scholar 

  10. Frederix I, Caiani EG, Dendale P et al (2019) ESC e‑Cardiology Working Group Position Paper: overcoming challenges in digital health implementation in cardiovascular medicine. Eur J Prev Cardiol 26(11):1166–1177. https://doi.org/10.1177/2047487319832394

    Article  PubMed  Google Scholar 

  11. Friedrich S, Groß S, König IR et al (2021) Applications of artificial intelligence/machine learning approaches in cardiovascular medicine: a systematic review with recommendations. Eur Heart J Digit Health 2(3):424–436. https://doi.org/10.1093/ehjdh/ztab054

    Article  PubMed Central  PubMed  Google Scholar 

  12. Quer G, Arnaout R, Henne M, Arnaout R (2021) Machine learning and the future of cardiovascular care: JACC state-of-the-art review. J Am Coll Cardiol 77(3):300–313. https://doi.org/10.1016/j.jacc.2020.11.030

    Article  PubMed Central  PubMed  Google Scholar 

  13. Radke PW (2023) Klinische Entscheidungsunterstützung in der Kardiologie. Kardiologie 17:72–80. https://doi.org/10.1007/s12181-023-00600-9

    Article  Google Scholar 

  14. Johnson V (2022) Das Smartphone in der Kitteltasche – Welche Apps brauche ich als Kardiologe wirklich? DGK-Herztage 2022, Bonn, 29. September–1. Oktober

    Google Scholar 

  15. Knoery CR, Heaton J, Polson R et al (2020) Systematic review of clinical decision support systems for prehospital acute coronary syndrome identification. Crit Pathw Cardiol 19(3):119–125. https://doi.org/10.1097/HPC.0000000000000217

    Article  PubMed Central  PubMed  Google Scholar 

  16. Singh G, Al’Aref SJ, Van Assen M et al (2018) Machine learning in cardiac CT: basic concepts and contemporary data. J Cardiovasc Comput Tomogr 12:192–201. https://doi.org/10.1016/j.jcct.2018.04.010

    Article  PubMed  Google Scholar 

  17. Zacharaki EI, Wang S, Chawla S et al (2009) Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn Reason Med 62:1609–1618. https://doi.org/10.1002/mrm.22147

    Article  Google Scholar 

  18. Unberath M, Zaech JN, Gao C et al (2019) Enabling machine learning in X‑ray-based procedures via realistic simulation of image formation. Int J Comput Assist Radiol Surg 14:1517–1528. https://doi.org/10.1007/s11548-019-02011-2

    Article  PubMed Central  PubMed  Google Scholar 

  19. Zamzmi G, Hsu LY, Li W et al (2021) Harnessing machine intelligence in automatic echocardiogram analysis: current status, limitations, and future directions. IEEE Rev Biomed Eng 14:181–203. https://doi.org/10.1109/RBME.2020.2988295

    Article  PubMed Central  PubMed  Google Scholar 

  20. Vardas PE, Asselbergs FW, van Smeden M, Friedman P (2022) The year in cardiovascular medicine 2021: digital health and innovation. Eur Heart J 43(4):271–279. https://doi.org/10.1093/eurheartj/ehab874

    Article  PubMed  Google Scholar 

  21. Xiong P, Lee SM, Chan G (2022) Deep learning for detecting and locating myocardial infarction by electrocardiogram: a literature review. Front Cardiovasc Med 9:860032. https://doi.org/10.3389/fcvm.2022.860032

    Article  ADS  PubMed Central  PubMed  Google Scholar 

  22. Gustafsson S, Gedon D, Lampa E et al (2022) Development and validation of deep learning ECG-based prediction of myocardial infarction in emergency department patients. Sci Rep 12(1):19615. https://doi.org/10.1038/s41598-022-24254-x

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  23. Al-Zaiti SS, Martin-Gill C, Zègre-Hemsey JK et al (2023) Machine learning for ECG diagnosis and risk stratification of occlusion myocardial infarction. Nat Med 29(7):1804–1813. https://doi.org/10.1038/s41591-023-02396-3

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Than MP, Pickering JW, Sandoval Y et al (2019) Machine learning to predict the likelihood of acute myocardial infarction. Circulation 140(11):899–909. https://doi.org/10.1161/CIRCULATIONAHA.119.041980

    Article  PubMed Central  PubMed  Google Scholar 

  25. Doudesis D, Lee KK, Yang J et al (2022) Validation of the myocardial-ischaemic-injury-index machine learning algorithm to guide the diagnosis of myocardial infarction in a heterogenous population: a prespecified exploratory analysis. Lancet Digit Health 4(5):e300–e308. https://doi.org/10.1016/S2589-7500(22)00025-5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Neumann JT, Twerenbold R, Ojeda F et al (2023) Personalized diagnosis in suspected myocardial infarction. Clin Res Cardiol 112(9):1288–1301. https://doi.org/10.1007/s00392-023-02206-3

    Article  PubMed Central  PubMed  Google Scholar 

  27. Doudesis D, Lee KK, Boeddinghaus J et al (2023) Machine learning for diagnosis of myocardial infarction using cardiac troponin concentrations. Nat Med 29(5):1201–1210. https://doi.org/10.1038/s41591-023-02325-4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Winther S, Murphy T, Schmidt SE et al (2022) Performance of the American Heart Association/American College of Cardiology guideline-recommended pretest probability model for the diagnosis of obstructive coronary artery disease. J Am Heart Assoc 11(24):e27260. https://doi.org/10.1161/JAHA.122.027260

    Article  PubMed Central  PubMed  Google Scholar 

  29. Forrest IS, Petrazzini BO, Duffy Á et al (2023) Machine learning-based marker for coronary artery disease: derivation and validation in two longitudinal cohorts. Lancet 401(10372):215–225. https://doi.org/10.1016/S0140-6736(22)02079-7

    Article  PubMed  Google Scholar 

  30. Khera R, Haimovich J, Hurley NC et al (2021) Use of machine learning models to predict death after acute myocardial infarction. JAMA Cardiol 6(6):633–641. https://doi.org/10.1001/jamacardio.2021.0122

    Article  PubMed  Google Scholar 

  31. Vasey B, Nagendran M, Campbell B et al (2022) Reporting guideline for the early-stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI. Nat Med 28(5):924–933. https://doi.org/10.1038/s41591-022-01772-9

    Article  CAS  PubMed  Google Scholar 

  32. Stachwitz P, Debatin JF (2023) Digitalisierung im Gesundheitswesen: heute und in Zukunft. Bundesgesundheitsbl 66:105–113. https://doi.org/10.1007/s00103-022-03642-8

    Article  Google Scholar 

  33. Kramer DB, Xu S, Kesselheim AS (2012) Regulation of medical devices in the United States and European Union. N Engl J Med 366:848–855. https://doi.org/10.1056/NEJMhle1113918

    Article  CAS  PubMed  Google Scholar 

  34. Wiens J, Saria S, Sendak M et al (2019) Do no harm: a roadmap for responsible machine learning for health care. Nat Med 25(9):1337–1340. https://doi.org/10.1038/s41591-019-0548-6

    Article  CAS  PubMed  Google Scholar 

  35. Reich C, Meder B (2023) The heart and artificial intelligence-how can we improve medicine without causing Harm. Curr Heart Fail Rep 20(4):271–279. https://doi.org/10.1007/s11897-023-00606-0

    Article  PubMed Central  PubMed  Google Scholar 

  36. Börm P (2021) Leitlinienbasierter Clinical Decision Support – Anforderungen an evidenzbasierte Entscheidungsunterstützungssysteme. OP-JOURNAL 37:28–35

    Article  Google Scholar 

  37. Luitjes SHE, Hermens RPMG, de Wit L et al (2018) An innovative implementation strategy to improve the use of Dutch guidelines on hypertensive disorders in pregnancy: A randomized controlled trial. Pregnancy Hypertens 14:131–138. https://doi.org/10.1016/j.preghy.2018.08.451

    Article  PubMed  Google Scholar 

  38. Eccles M, McColl E, Steen N et al (2002) Effect of computerised evidence based guidelines on management of asthma and angina in adults in primary care: cluster randomised controlled trial. BMJ 325:941. https://doi.org/10.1136/bmj.325.7370.941

    Article  PubMed Central  PubMed  Google Scholar 

  39. Wells S, Rafter N, Kenealy T et al (2017) The impact of a point-of-care testing device on CVD risk assessment completion in New Zealand primary-care practice: A cluster randomised controlled trial and qualitative investigation. PLoS ONE 12:e174504. https://doi.org/10.1371/journal.pone.0174504

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Mazzaglia G, Piccinni C, Filippi A et al (2016) Effects of a computerized decision support system in improving pharmacological management in high-risk cardiovascular patients: A cluster-randomized open-label controlled trial. Health Informatics J 22:232–247. https://doi.org/10.1177/1460458214546773

    Article  PubMed  Google Scholar 

  41. Karlsson LO, Nilsson S, Bång M et al (2018) A clinical decision support tool for improving adherence to guidelines on anticoagulant therapy in patients with atrial fibrillation at risk of stroke: A cluster-randomized trial in a Swedish primary care setting (the CDS-AF study). PLoS Med 15:e1002528. https://doi.org/10.1371/journal.pmed.1002528

    Article  PubMed Central  PubMed  Google Scholar 

  42. Murphy DR, Meyer AN, Russo E et al (2016) The burden of Inbox notifications in commercial electronic health records. JAMA Intern Med 176:559–560. https://doi.org/10.1001/jamainternmed.2016.0209

    Article  PubMed Central  PubMed  Google Scholar 

  43. Harry E, Sinsky C, Dyrbye LN et al (2021) Physician task load and the risk of burnout among US physicians in a national survey. Jt Comm J Qual Patient Saf 47:76–85. https://doi.org/10.1016/j.jcjq.2020.09.011

    Article  PubMed  Google Scholar 

  44. West CP, Dyrbye LN, Shanafelt TD (2018) Physician burnout: contributors, consequences and solutions. J Intern Med 283:516–529. https://doi.org/10.1111/joim.12752

    Article  CAS  PubMed  Google Scholar 

  45. Kouri A, Yamada J, Cheung LSJ et al (2022) Do providers use computerized clinical decision support systems? A systematic review and meta-regression of clinical decision support uptake. Implement Sci 17(1):21. https://doi.org/10.1186/s13012-022-01199-3

    Article  PubMed Central  PubMed  Google Scholar 

  46. Mello MM, Guha N (2024) Understanding liability risk from using health care artificial intelligence tools. N Engl J Med 390(3):271–278. https://doi.org/10.1056/NEJMhle2308901

    Article  PubMed  Google Scholar 

  47. Groenhof TKJ, Asselbergs FW, Groenwold RHH et al (2019) The effect of computerized decision support systems on cardiovascular risk factors: a systematic review and meta-analysis. BMC Med Inform Decis Mak 19(1):108. https://doi.org/10.1186/s12911-019-0824-x

    Article  PubMed Central  PubMed  Google Scholar 

  48. Lu Y, Melnick ER, Krumholz HM (2022) Clinical decision support in cardiovascular medicine. BMJ 377:e59818. https://doi.org/10.1136/bmj-2020-059818

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Giannitsis.

Ethics declarations

Interessenkonflikt

C. Reich, N. Frey und E. Giannitsis geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Hinweis des Verlags

Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reich, C., Frey, N. & Giannitsis, E. Digitalisierung und Clinical Decision Tools. Herz (2024). https://doi.org/10.1007/s00059-024-05242-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00059-024-05242-5

Schlüsselwörter

Keywords

Navigation