Skip to main content
Log in

Functional Analysis of Genes in Mycobacterium tuberculosis Action Against Autophagosome–Lysosome Fusion

  • REVIEW ARTICLE
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Tuberculosis is a lethal disease that is one of the world's top ten death-associated infections in humans; Mycobacterium tuberculosis causes tuberculosis, and this bacterium is linked to the lysis of autophagolysosomal fusion action, a self-defense mechanism of its own. Thus, Cytoplasmic bacilli are sequestered by autophagy and transported to lysosomes to be inactivated to destroy intracellular bacteria. Besides this, a macrophage can limit intracellular Mycobacterium by using a type of autophagy, selective autophagy, a cell that marks undesirable ubiquitin existence in cytosolic cargo, acting as a “eat me” sensor in conjunction with cellular homeostasis. Mycobacterium tuberculosis genes of the PE_PGRS protein family inhibit autophagy, increase mycobacterial survival, and lead to latent tuberculosis infection associated with miRNAs. In addition, the family of autophagy-regulated (ATG) gene members are involved in autophagy and controls the initiation, expansion, maturation, and fusion of autophagosomes with lysosomes, among other signaling events that control autophagy flux and reduce inflammatory responses and forward to promote cellular proliferation. In line with the formation of caseous necrosis in macrophages by Mycobacterium tuberculosis and their action on the lysis of autophagosome fusion, it leads to latent tuberculosis infection. Therefore, we aimed to comprehensively analyses the autophagy and self-defense mechanism of Mycobacterium tuberculosis, which is to be gratified future research on novel therapeutic tools and diagnostic markers against tuberculosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. WHO. Global tuberculosis report 2021; 2021. https://www.who.int/publications/i/item/9789240037021.

  2. Ouimet M, Koster S, Sakowski E, Ramkhelawon B, Solingen CV, Oldebeken S (2016) Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism. Nat Immunol 17(6):677. https://doi.org/10.1038/ni.3434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sakowski ET, Koster S, Celhay CP, Park HS, Shrestha E, Hetzenecker SE (2015) Ubiquilin 1 promotes IFN-γ-induced xenophagy of Mycobacterium tuberculosis. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1005076

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pahari S, Negi S, Aqdas M, Arnett E, Schlesinger LS, Agrewala JN (2020) Induction of autophagy through CLEC4E in combination with TLR4: an innovative strategy to restrict the survival of Mycobacterium tuberculosis. Autophagy 16(6):1021–1043. https://doi.org/10.1080/15548627.2019.1658436

    Article  CAS  PubMed  Google Scholar 

  5. Domingo-Gonzalez R, Prince O, Cooper A, Khader S (2016) Cytokines and Chemokines in Mycobacterium tuberculosis infection. Microbiol Spectr. https://doi.org/10.1128/microbiolspec.TBTB2-0018-2016

    Article  PubMed  Google Scholar 

  6. Ge P, Lei Z, Yu Y, Lu Z, Qiang L, Chai Q (2022) M. tuberculosis PknG manipulates host autophagy flux to promote pathogen intracellular survival. Autophagy 18(3):576–594. https://doi.org/10.1080/15548627.2021.1938912

    Article  CAS  PubMed  Google Scholar 

  7. Bell SL, Lopez KL, Cox JS, Patrick KL, Watson RO (2021) Galectin-8 senses phagosomal damage and recruits selective autophagy adapter TAX1BP1 to control Mycobacterium tuberculosis infection in macrophages. MBio. https://doi.org/10.1128/mBio.01871-20

    Article  PubMed  PubMed Central  Google Scholar 

  8. Franco LH, Nair VR, Scharn CR, Xavier RJ, Torrealba JR, Shiloh MU (2017) The ubiquitin-ligase Smurf1 functions in selective autophagy of M. tuberculosis and anti-tuberculous host defense. Cell Host Microbe 21(1):59. https://doi.org/10.1016/j.chom.2016.11.002

    Article  CAS  PubMed  Google Scholar 

  9. Liu F, Chen J, Wang P, Li H, Zhou Y, Liu H (2018) MicroRNA-27a controls the intracellular survival of Mycobacterium tuberculosis by regulating calcium-associated autophagy. Nat Commun. https://doi.org/10.1038/s41467-018-06836-4

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liang S, Wang F, Bao C, Han J, Guo Y, Liu F (2020) BAG2 ameliorates endoplasmic reticulum stress-induced cell apoptosis in Mycobacterium tuberculosis-infected macrophages through selective autophagy. Autophagy 16(8):1453–1467. https://doi.org/10.1080/15548627.2019.1687214

    Article  CAS  PubMed  Google Scholar 

  11. Iqbal IK, Bajeli S, Sahu S, Bhat SA, Kumar A (2021) Hydrogen sulfide-induced GAPDH sulfhydration disrupts the CCAR2-SIRT1 interaction to initiate autophagy. Autophagy 17(11):3511–3529. https://doi.org/10.1080/15548627.2021.1876342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Paul BD, Snyder SH (2015) H2S: a novel gasotransmitter that signals by sulfhydration. Trends Biochem Sci 40(11):687. https://doi.org/10.1016/j.tibs.2015.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pellegrini JM, Sabbione F, Morelli MP, Tateosian NL, Castello FA, Amiano NO (2021) Neutrophil autophagy during human active tuberculosis is modulated by SLAMF1. Autophagy 17(9):2629–2638. https://doi.org/10.1080/15548627.2020.1825273

    Article  CAS  PubMed  Google Scholar 

  14. Kim TS, Jin YB, Kim YS, Kim S, Kim JK, Lee HM (2019) SIRT3 promotes antimycobacterial defenses by coordinating mitochondrial and autophagic functions. Autophagy 15:1356–1375. https://doi.org/10.1080/15548627.2019.1582743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chandra P, Ghanwat S, Matta SK, Yadav SS, Mehta M, Siddiqui Z (2015) Mycobacterium tuberculosis inhibits RAB7 recruitment to selectively modulate autophagy flux in macrophages. Sci Rep. https://doi.org/10.1038/srep16320

    Article  PubMed  PubMed Central  Google Scholar 

  16. Romagnoli A, Etna MP, Giacomini E, Pardini M, Remoli ME, Corazzari M (2012) ESX-1 dependent impairment of autophagic flux by Mycobacterium tuberculosis in human dendritic cells. Autophagy 8(9):1357–1370. https://doi.org/10.4161/auto.20881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fang F, Ge Q, Li R, Lv J, Zhang Y, Feng A (2020) LPS restores protective immunity in macrophages against Mycobacterium tuberculosis via autophagy. Mol Immunol 124:18–24. https://doi.org/10.1016/j.molimm.2020.05.001

    Article  CAS  PubMed  Google Scholar 

  18. Sengupta S, Nayak B, Meuli M, Sander P, Mishra S, Sonawane A (2021) Mycobacterium tuberculosis phosphoribosyltransferase promotes bacterial survival in macrophages by inducing histone hypermethylation in autophagy-related genes. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2021.676456

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jiang F, Lou J, Zheng X, Yang X (2021) LncRNA MIAT regulates autophagy and apoptosis of macrophage infected by Mycobacterium tuberculosis through the miR-665/ULK1 signaling axis. Mol Immunol 139:42–49. https://doi.org/10.1016/j.molimm.2021.07.023

    Article  CAS  PubMed  Google Scholar 

  20. Gonzalez-Orozco M, Strong EJ, Paroha R, Lee S (2022) Reversing BCG-mediated autophagy inhibition and mycobacterial survival to improve vaccine efficacy. BMC Immunol. https://doi.org/10.1186/s12865-022-00518-z

    Article  PubMed  PubMed Central  Google Scholar 

  21. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S (2021) Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1. Autophagy 17(1):1–382. https://doi.org/10.1080/15548627.2020.1797280

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mizushima N, Murphy LO (2020) Autophagy assays for biological discovery and therapeutic development. Trends Biochem Sci 45:1080–1093. https://doi.org/10.1016/j.tibs.2020.07.006

    Article  CAS  PubMed  Google Scholar 

  23. Feng L, Hu J, Zhang W, Dong Y, Xiong S, Dong C (2020) RELL1 inhibits autophagy pathway and regulates Mycobacterium tuberculosis survival in macrophages. Tuberculosis 120:101900. https://doi.org/10.1016/j.tube.2020.101900

    Article  CAS  PubMed  Google Scholar 

  24. Slayden RA, Jackson M, Zucker J, Ramirez MV, Dawson C, Sampson N, Thomas ST, Jamshidi N, Sisk P, Caspi R, Crick DC, McNeil MR, Pavelka MS, Niederweis M, Siroy A, Dona V, McFadden J, Boshoff H (2012) Tuberculosis community annotation project (TBCAP) 2012: updating and curating metabolic pathways of TB. Tuberculosis (Edinb) 93(1):47. https://doi.org/10.1016/j.tube.2012.11.001

    Article  CAS  Google Scholar 

  25. Böth D, Schneider G, Schnell R (2011) Peptidoglycan remodeling in Mycobacterium tuberculosis: comparison of structures and catalytic activities of RipA and RipB. J Mol Biol 413(1):247–260. https://doi.org/10.1016/j.jmb.2011.08.014

    Article  CAS  PubMed  Google Scholar 

  26. Ruggiero A, Marasco D, Squeglia F, Soldini S, Pedone E, Pedone C, Berisio R (2010) Structure and functional regulation of RipA, a mycobacterial enzyme essential for daughter cell separation. Structure 18(9):1184–1190. https://doi.org/10.1016/j.str.2010.06.007

    Article  CAS  PubMed  Google Scholar 

  27. Ruggiero A, Squeglia F, Esposito C, Marasco D, Pedone E, Pedone C, Berisio R (2010) Expression, purification, crystallization and preliminary X-ray crystallographic analysis of the resuscitation promoting factor interacting protein RipA from M. tuberculosis. Protein Pept Lett 17(1):70–73. https://doi.org/10.2174/092986610789909557

    Article  CAS  PubMed  Google Scholar 

  28. Mavrici D, Marakalala MJ, Holton JM, Prigozhin DM, Gee CL, Zhang YJ, Rubin EJ, Alber T (2014) Mycobacterium tuberculosis FtsX extracellular domain activates the peptidoglycan hydrolase, RipC. Proc Natl Acad Sci USA 111(22):8037–8042. https://doi.org/10.1073/pnas.1321812111

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Parthasarathy G, Lun S, Guo H, Ammerman NC, Geiman DE, Bishai WR (2012) Rv2190c, an NlpC/P60 family protein, is required for full virulence of Mycobacterium tuberculosis. PLoS ONE 7(8):e43429. https://doi.org/10.1371/journal.pone.0043429

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Böth D, Steiner EM, Izumi A, Schneider G, Schnell R (2014) RipD (Rv1566c) from Mycobacterium tuberculosis: adaptation of an NlpC/p60 domain to a non-catalytic peptidoglycan-binding function. Biochem J 457(1):33–41. https://doi.org/10.1042/BJ20131227

    Article  CAS  PubMed  Google Scholar 

  31. Shariq M, Quadir N, Sharma N, Singh J, Sheikh JA, Khubaib M (2021) Mycobacterium tuberculosis RipA dampens TLR4-mediated host protective response using a multi-pronged approach involving autophagy, apoptosis, metabolic repurposing, and immune modulation. Front Immunol. https://doi.org/10.3389/fimmu.2021.636644

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gupta MN, Pandey S, Ehtesham NZ, Hasnain SE (2019) Medical implications of protein moonlighting. Indian J Med Res 149(3):322–325. https://doi.org/10.4103/ijmr.IJMR_2192_18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Truong T, Penn BH (2020) An M. tuberculosis metabolic enzyme moonlights as an anti-inflammatory effector protein. Cell Host Microbe 27:310–312. https://doi.org/10.1016/j.chom.2020.02.012

    Article  CAS  PubMed  Google Scholar 

  34. Shi Q, Wang J, Yang Z, Liu Y (2020) CircAGFG1modulates autophagy and apoptosis of macrophages infected by Mycobacterium tuberculosis via the Notch signaling pathway. Ann Transl Med. https://doi.org/10.21037/atm.2020-20-3048

    Article  PubMed  PubMed Central  Google Scholar 

  35. Strong EJ, Ng TW, Porcelli SA, Lee S (2021) Mycobacterium tuberculosis PE_PGRS20 and PE_PGRS47 proteins inhibit autophagy by interaction with Rab1A. MSphere 6(4):e00549-e621. https://doi.org/10.1128/mSphere.00549-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Putra Siregar TA, Prombutara P, Kanjanasirirat P, Kunkaew N, Tubsuwan A, Boonmee A (2022) The autophagy-resistant Mycobacterium tuberculosis Beijing strain upregulates KatG to evade starvation-induced autophagic restriction. Pathog Dis 80(1):ftac004. https://doi.org/10.1093/femspd/ftac004

    Article  CAS  Google Scholar 

  37. Chen Y, Chen M, Lin F, Lo M, Liu J, Liao L (2020) MicroRNA-889 inhibits autophagy to maintain mycobacterial survival in patients with latent tuberculosis infection by targeting TWEAK. MBio. https://doi.org/10.1128/mBio.03045-19

    Article  PubMed  PubMed Central  Google Scholar 

  38. Padhi A, Pattnaik K, Biswas M, Jagadeb M, Behera A, Sonawane A (2019) Mycobacterium tuberculosis LprE Suppresses TLR2-Dependent Cathelicidin and Autophagy Expression to Enhance Bacterial Survival in Macrophages. J Immunol (Baltimore, Md: 1950) 203(10):2665–2678. https://doi.org/10.4049/jimmunol.1801301

  39. Strong EJ, Jurcic Smith KL, Saini NK, Ng TW, Porcelli SA, Lee S (2020) Identification of autophagy-inhibiting factors of mycobacterium tuberculosis by high-throughput loss-of-function screening. Infect Immun. https://doi.org/10.1128/IAI.00269-20

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tateosian NL, Pellegrini JM, Amiano NO, Rolandelli A, Casco N, Palmero DJ (2017) IL17A augments autophagy in Mycobacterium tuberculosis-infected monocytes from patients with active tuberculosis in association with the severity of the disease. Autophagy 13(7):1191–1204. https://doi.org/10.1080/15548627.2017.1320636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Qu Y, Gao Q, Wu S, Xu T, Jiang D, Xu G (2021) MicroRNA-142-3p inhibits autophagy and promotes intracellular survival of Mycobacterium tuberculosis by targeting ATG16L1 and ATG4c. Int Immunopharmacol 101:108202. https://doi.org/10.1016/j.intimp.2021.108202

    Article  CAS  PubMed  Google Scholar 

  42. Li Q, Xie Y, Cui Z, Huang H, Yang C, Yuan B (2021) Activation of hypoxia-inducible factor 1 (Hif-1) enhanced bactericidal effects of macrophages to Mycobacterium tuberculosis. Tuberculosis 126:102044. https://doi.org/10.1016/j.tube.2020.102044

    Article  CAS  PubMed  Google Scholar 

  43. Li M, Cui J, Niu W, Huang J, Feng T, Sun B (2019) Long non-coding PCED1B-AS1 regulates macrophage apoptosis and autophagy by sponging miR-155 in active tuberculosis. Biochem Biophys Res Commun 509(3):803–809. https://doi.org/10.1016/j.bbrc.2019.01.005

    Article  CAS  PubMed  Google Scholar 

  44. Wu M, Liu Z, Zhang S (2022) Down-regulation of hsa_circ_0045474 induces macrophage autophagy in tuberculosis via miR-582-5p/TNKS2 axis. Innate Immun 28(1):11–18. https://doi.org/10.1177/17534259211064285

    Article  CAS  PubMed  Google Scholar 

  45. Saini NK, Baena A, Ng TW, Venkataswamy MM, Kennedy SC, Kunnath-Velayudhan S (2016) Suppression of autophagy and antigen presentation by Mycobacterium tuberculosis PE_PGRS47. Nat Microbiol 1:1–12. https://doi.org/10.1038/nmicrobiol.2016.133

    Article  CAS  Google Scholar 

  46. Duan L, Yi M, Chen J, Li S, Chen W (2016) Mycobacterium tuberculosis EIS gene inhibits macrophage autophagy through up-regulation of IL-10 by increasing the acetylation of histone H3. Biochem Biophys Res Commun 473(4):1229–1234. https://doi.org/10.1016/j.bbrc.2016.04.045

    Article  CAS  PubMed  Google Scholar 

  47. Sharma N, Shariq M, Quadir N, Singh J, Sheikh JA, Hasnain SE (2021) Mycobacterium tuberculosis protein PE6 (Rv0335c), a novel TLR4 agonist, evokes an inflammatory response and modulates the cell death pathways in macrophages to enhance intracellular survival. Front Immunol 556:474. https://doi.org/10.3389/fimmu.2021.696491

    Article  CAS  Google Scholar 

  48. Faridgohar M, Nikoueinejad H (2017) New findings of Toll-like receptors involved in Mycobacterium tuberculosis infection. Pathog Glob Health 111(5):256–264. https://doi.org/10.1080/20477724.2017.1351080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Strong EJ, Wang J, Ng TW, Porcelli SA, Lee S (2022) Mycobacterium tuberculosis PPE51 inhibits autophagy by suppressing toll-like receptor 2-dependent signaling. MBio. https://doi.org/10.1128/mbio.02974-21

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sampath P, Periyasamy KM, Ranganathan UD, Bethunaickan R (2021) Monocyte and macrophage miRNA: potent biomarker and target for host-directed therapy for tuberculosis. Front Immunol. https://doi.org/10.3389/fimmu.2021.667206

    Article  PubMed  PubMed Central  Google Scholar 

  51. Dong W, Wang G, Feng J, Li P, Wang R, Lu H (2022) MiR-25 blunts autophagy and promotes the survival of Mycobacterium tuberculosis by regulating NPC1. IScience. https://doi.org/10.1016/j.isci.2022.104279

    Article  PubMed  PubMed Central  Google Scholar 

  52. Etna MP, Sinigaglia A, Grassi A, Giacomini E, Romagnoli A, Pardini M (2018) Mycobacterium tuberculosis-induced miR-155 subverts autophagy by targeting ATG3 in human dendritic cells. PLoS Pathog 14(1):e1006790. https://doi.org/10.1371/journal.ppat.1006790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhou M, Yu G, Yang X, Zhu C, Zhang Z, Zhan X (2016) Circulating microRNAs as biomarkers for the early diagnosis of childhood tuberculosis infection. Mol Med Rep 13(6):4620–4626. https://doi.org/10.3892/mmr.2016.5097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu K, Hong D, Zhang F, Li X, He M, Han X (2020) MicroRNA-106a inhibits autophagy process and antimicrobial responses by targeting ULK1, ATG7, and ATG16L1 during mycobacterial infection. Front Immunol. https://doi.org/10.3389/fimmu.2020.610021

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ojha R, Nandani R, Chatterjee N, Prajapati VK (2018) Emerging role of circular RNAs as potential biomarkers for the diagnosis of human diseases. Adv Exp Med Biol 1087:141–157. https://doi.org/10.1007/978-981-13-1426-1_12

    Article  CAS  PubMed  Google Scholar 

  56. Zhang X, Zhang Q, Wu Q, Tang H, Ye L, Zhang Q (2020) Integrated analyses reveal hsa_circ_0028883 as a diagnostic biomarker in active tuberculosis. Infect Genet Evol 83:104323. https://doi.org/10.1016/j.meegid.2020.104323

    Article  CAS  PubMed  Google Scholar 

  57. Liu G, Wan Q, Li J, Hu X, Gu X, Xu S (2020) Silencing miR-125b-5p attenuates inflammatory response and apoptosis inhibition in Mycobacterium tuberculosis-infected human macrophages by targeting DNA damage-regulated autophagy modulator 2 (DRAM2). Cell Cycle 19(22):3182–3194. https://doi.org/10.1080/15384101.2020.1838792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shen H, Gu J, Xiao H, Liang S, Yang E, Yang R (2017) Selective destruction of interleukin 23–induced expansion of a major antigen-specific γδ T-cell subset in patients with tuberculosis. J Infect Dis 215(3):420–430. https://doi.org/10.1093/infdis/jiw511

    Article  CAS  PubMed  Google Scholar 

  59. Wagh V, Urhekar A, Modi D (2017) Levels of microRNA miR-16 and miR-155 are altered in serum of patients with tuberculosis and associate with responses to therapy. Tuberculosis 102:24–30. https://doi.org/10.1016/j.tube.2016.10.007

    Article  CAS  PubMed  Google Scholar 

  60. Kotze LA, Leukes VN, Fang Z, Lutz MB, Fitzgerald BL, Belisle J (2021) Evaluation of autophagy mediators in myeloid-derived suppressor cells during human tuberculosis. Cell Immunol 369:104426. https://doi.org/10.1016/j.cellimm.2021.104426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang D, Lin Y, Xu F, Zhang H, Zhu X, Liu Z (2022) SIRPα maintains macrophage homeostasis by interacting with PTK2B kinase in Mycobacterium tuberculosis infection and through autophagy and necroptosis. Ebio Med. https://doi.org/10.1016/j.ebiom.2022.104278

    Article  Google Scholar 

  62. Braverman J, Sogi KM, Benjamin D, Nomura DK, Stanley SA (2016) HIF-1α is an essential mediator of IFN-γ dependent immunity to Mycobacterium tuberculosis. J Immunol 197(4):1287. https://doi.org/10.4049/jimmunol.1600266

    Article  CAS  PubMed  Google Scholar 

  63. Zhang R, Varela M, Forn-Cuní G, Torraca V, Meijer AH (2020) Deficiency in the autophagy modulator Dram1 exacerbates pyroptotic cell death of Mycobacteria-infected macrophages. Cell Death Dis 11(4):277. https://doi.org/10.1038/s41419-020-2477-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bartlett S, Gemiarto AT, Ngo MD, Sajiir H, Hailu S, Sinha R (2020) GPR183 regulates interferons, autophagy, and bacterial growth during Mycobacterium tuberculosis infection and is associated with TB disease severity. Front Immunol 11:601534. https://doi.org/10.3389/fimmu.2020.601534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Laopanupong T, Prombutara P, Kanjanasirirat P, Benjaskulluecha S, Boonmee A, Palaga T (2021) Lysosome repositioning as an autophagy escape mechanism by Mycobacterium tuberculosis Beijing strain. Sci Rep 11:4342. https://doi.org/10.1038/s41598-021-83835-4

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Horne DJ, Graustein AD, Shah JA, Peterson G, Savlov M, Steele S (2016) Human ULK1 variation and susceptibility to Mycobacterium tuberculosis infection. J Infect Dis 214(8):1260–1267. https://doi.org/10.1093/infdis/jiw347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Haque MF, Boonhok R, Prammananan T, Chaiprasert A, Utaisincharoen P, Sattabongkot J (2015) Resistance to cellular autophagy by Mycobacterium tuberculosis Beijing strains. Innate Immun. https://doi.org/10.1177/1753425915594245

    Article  PubMed  Google Scholar 

  68. Fang J, Dong C, Xiong S (2022) Mycobacterium tuberculosis Rv0790c inhibits the cellular autophagy at its early stage and facilitates mycobacterial survival. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2022.1014897

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lin X, Wei M, Song F, Xue D, Wang Y (2020) N-acetylcysteine (NAC) attenuating apoptosis and autophagy in RAW2647 cells in response to incubation with mycolic acid from bovine Mycobacterium tuberculosis complex. Pol J Microbiol 69(2):223–229. https://doi.org/10.33073/pjm-2020-026

    Article  PubMed  PubMed Central  Google Scholar 

  70. Gan Y, Hu Q, Li A, Gu L, Guo S (2022) Estradiol inhibits autophagy of Mycobacterium tuberculosis-infected 16HBE cells and controls the proliferation of intracellular Mycobacterium tuberculosis. Mol Med Rep. https://doi.org/10.3892/mmr.2022.12712

    Article  PubMed  PubMed Central  Google Scholar 

  71. Zhang L, Zhao Y, Guo L (2018) 17β-estradiol protects INS-1 insulinoma cells from mitophagy via G protein-coupled estrogen receptors and the PI3K/Akt signaling pathway. Int J Mol Med. https://doi.org/10.3892/ijmm.2018.3470

    Article  PubMed  PubMed Central  Google Scholar 

  72. Xue J, Shi Z, Zou J, Li X (2017) Inhibition of PI3K/AKT/mTOR signaling pathway promotes autophagy of articular chondrocytes and attenuates inflammatory response in rats with osteoarthritis. Biomed Pharmacother 89:1252–1261. https://doi.org/10.1016/j.biopha.2017.01.130

    Article  CAS  PubMed  Google Scholar 

  73. Zhang Q, Sun J, Wang Y, He W, Wang L, Zheng Y (2017) Antimycobacterial and anti-inflammatory mechanisms of Baicalin via induced autophagy in macrophages infected with Mycobacterium tuberculosis. Front Microbiol 8:2142. https://doi.org/10.3389/fmicb.2017.02142

    Article  PubMed  PubMed Central  Google Scholar 

  74. Chen W, Liu Z, Zheng Y, Wei B, Shi J, Shao B (2021) Selenium donor restricts the intracellular growth of Mycobacterium tuberculosis through the induction of c-Jun-mediated both canonical autophagy and LC3-associated phagocytosis of alveolar macrophages. Microb Pathog 161:105269. https://doi.org/10.1016/j.micpath.2021.105269

    Article  CAS  PubMed  Google Scholar 

  75. Chen G, Yang F, Fan S, Jin H, Liao K, Li X (2022) Immunomodulatory roles of selenium nanoparticles: novel arts for potential immunotherapy strategy development. Front Immunol. https://doi.org/10.3389/fimmu.2022.956181

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ruiz A, Guzmán-Beltrán S, Carreto-Binaghi LE, Gonzalez Y, Juárez E (2019) DNA from virulent M. tuberculosis induces TNF-α production and autophagy in M1 polarised macrophages. Microb Pathog 132:166–177. https://doi.org/10.1016/j.micpath.2019.04.041

    Article  CAS  PubMed  Google Scholar 

  77. Su H, Zhu S, Zhu L, Huang W, Wang H, Zhang Z (2016) Recombinant lipoprotein Rv1016c derived from Mycobacterium tuberculosis is a TLR-2 ligand that induces macrophages apoptosis and inhibits MHC II antigen processing. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2016.00147

    Article  PubMed  PubMed Central  Google Scholar 

  78. Mourenza A, Gil JA, Mateos LM, Letek M (2020) Novel treatments against mycobacterium tuberculosis based on drug repurposing. Antibiotics. https://doi.org/10.3390/antibiotics9090550

    Article  PubMed  PubMed Central  Google Scholar 

  79. Hu Y, Wen Z, Liu S, Cai Y, Guo J, Xu Y, Lin D, Zhu J, Li D, Chen X (2020) Ibrutinib suppresses intracellular mycobacterium tuberculosis growth by inducing macrophage autophagy. J Infect 80(6):e19–e26. https://doi.org/10.1016/j.jinf.2020.03.003

    Article  ADS  CAS  PubMed  Google Scholar 

  80. Singh B, Saqib M, Chakraborty A, Bhaskar S (2019) Lipoarabinomannan from Mycobacterium indicus pranii shows immunostimulatory activity and induces autophagy in macrophages. PloS one 14(10), e0224239. https://doi.org/10.1371/journal.pone.0224239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

There was no specific grant from a public, private, or non-profit funding organisation to write this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karthikeyan Sundaram.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sundaram, K., Vajravelu, L.K. Functional Analysis of Genes in Mycobacterium tuberculosis Action Against Autophagosome–Lysosome Fusion. Indian J Microbiol (2024). https://doi.org/10.1007/s12088-024-01227-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12088-024-01227-4

Keywords

Navigation