Skip to main content
Log in

Spectrophotometric Method for Determination of Cu(II) Using a New Schiff Base Ligand

  • Published:
Journal of Applied Spectroscopy Aims and scope

The Cu(II) was found using a quick and uncomplicated procedure that involved reacting it with a freshly synthesized ligand to create an orange complex that had an absorbance peak of 481.5 nm in an acidic solution. The best conditions for the formation of the complex were studied from the concentration of the ligand, medium, the effect of the addition sequence, the effect of temperature, and the time of complex formation. The results obtained are scatter plot extending from 0.1–9 ppm and a linear range from 0.1–7 ppm. Relative standard deviation (RSD%) for n = 8 is less than 0.5, recovery % (R%) within acceptable values, correlation coefficient (r) equal 0.9986, coefficient of determination (r2) equal to 0.9973, and percentage capital R-squared explained variation as a percentage/total variation (R2%) equal to 99.73. The method has been successfully applied for the estimation of Cu(II) ions without the influence of other interfering ions, and it can be applied to estimate Cu(II) in any sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. M. Elham, A. S. Kawther, N. Z. Asmaa, M. R. Rasmia, J. Pure Appl. Sci., 30, No. 1, 96–106 (2017); doi: https://doi.org/10.1109/5.771073.

  2. Q. Xingpu, Q. Jianzhong, Ch. Tong, L. Daoli, Ch. Bin, J. Electrochem. Sci., 12, 5511–5520 (2017); doi: https://doi.org/10.20964/2017.06.49.

  3. I. Ivanova, B. Atanasova, A. Kostadinova, Y. Bocheva, K. Tzatchev, Acta Med. Bulgarica, 43, No. 2, 21–31 (2016); doi: https://doi.org/10.1515/amb-2016-0013.

    Article  Google Scholar 

  4. Stela Georgieva, Petar Todorov, Artem Bezfamilnyi, J. Chem. Tech. Metall., 56, No. 5, 999–1007 (2021).

    Google Scholar 

  5. H. Jeanne, H. J. Freeland-Graves, S. Namrata, J. L. Jane, J. Trace Elements Medicine and Biology, 31, 135–141 (2015); doi: https://doi.org/10.1016/j.jtemb.2014.04.006.

  6. Rosanna Squitti, J. Trace Elements Medicine and Biology, 26, 93–96 (2012); doi: https://doi.org/10.1016/j.jtemb.2012.04.012.

  7. Rosanna Squitti, Mariacristina Siotto, Renato Polimanti, Neurobiology Aging, 35, No. 2, S40–S50 (2014); doi: https://doi.org/10.1016/j.neurobiolaging.2014.02.031.

    Article  Google Scholar 

  8. D. L. De Romańa, M. Olivares, R. Uauy, M. Araya, J. Trace Elements Medicine and Biology, 25, No. 1, 3–13 (2011); doi: https://doi.org/10.1016/j.jtemb.2010.11.004.

  9. P. Palumaa, Fed. Eur. Biochem. Soc. Lett., 587, No. 13, 1902–1910 (2013); doi: https://doi.org/10.1016/j.febslet.2013.05.019.

  10. F. Haber, J. Weiss, Proc. R. Soc. Lond. A, 147, 332–351 (1934); doi:https://doi.org/10.1098/rspa.1934.0221.

  11. S. G. Ehab, A. A. Tamer, A.-E. Amr, G. M. Gehad, H. A. El-Bary, Int. J. Electrochem. Sci., 15, 11904–11919 (2020); doi: https://doi.org/10.20964/2020.12.21.

    Article  Google Scholar 

  12. M. E. Khaled, H. Qamar, A. Khawla, Progress Chem. Biochem. Res., 5, No. 3, 229–238 (2022); doi: https://doi.org/10.22034/pcbr.2022.338475.1222.

    Article  Google Scholar 

  13. D. Admasu, D. N. Reddy, K. N. Mekonnen, Spectrophotometric Determination of Cu(II) in Soil and vegetable samples collected from Abraha Atsbeha, Tigray, Ethiopia using heterocyclic thiosemicarbazone. SpringerPlus, 5, 1169 (2016); doi: https://doi.org/10.1186/s40064-016-2848-3.

    Article  Google Scholar 

  14. T. Le Ngoc, T. Le Van, X. Ch. Nguyen, Rasayan J. Chem., 11, No. 2, 850–856 (2018); doi: https://doi.org/10.31788/RJC.2018.1122088.

    Article  Google Scholar 

  15. A. Tupys, O. Tymoshuk, P. Rydchuk, Chem. Chem. Technol., 10, No. 1, 19–25 (2016); doi: https://doi.org/10.23939/chcht10.01.019.

  16. Salman S. Alharthi, Hamed. M. Al-Saidi, Appl. Sci., 10, No. 11, 1–17 (2020); doi: https://doi.org/10.3390/app10113895.

  17. R. G. Sreenivasula, R. P. Raveendra, Int. Lett. Chem., Phys., Astronomy, 51, 105–114 (2015); doi: https://doi.org/10.18052/www.scipress.com/ILCPA.51.105.

  18. O. Zagurskaya-Sharaevskaya, I. Povar, Ecol. Process, 4, No. 16 (2015); doi: https://doi.org/10.1186/s13717-015-0042-0

  19. Mustafa Hamid Atiyah, Alaa Frak Hussain, System. Rev. Pharm., 11, No. 10, 171–181 (2020); doi: https://doi.org/10.31838/srp.2020.10.29.

    Article  Google Scholar 

  20. Esraa Raafid, Muneer A. Al-Da’amy, Salih Hadi Kadhim, Indonesian J. Chem., 20, No. 5, 1080–1091 (2020); doi: https://doi.org/10.22146/ijc.47894.

  21. J. C. Souza, A. T. Toci, M. A. Beluomini, S. P. Eiras, Revista Virtual de Química, 8, No. 3, 687–701 (2016); doi: https://doi.org/10.5935/1984-6835.20160052.

  22. A. D. Saadiyah, R. B. Sana, Asian J. Chem., 26, No. 16, 5305–5310 (2014); doi: https://doi.org/10.14233/ajchem.2014.17754.

    Article  Google Scholar 

  23. O. Sama, D. Serkan, A. Müberra, J. Taibah University Science, 12, No. 6, 820–825 (2018); doi: https://doi.org/10.1080/16583655.2018.1521710.

  24. M. A. Dhiea, A. A. Muneer, IOP Conference Series: Materials Science and Engineering, 928, 1–8 (2020); doi: https://doi.org/10.1088/1757-899X/928/5/052013.

  25. Ojha, Ankur, N. Bhojak, Kaushik Shelly, Joshi Swati, Int. J. Food Fermentation Technol., 8, No. 1, 99–103 (2018); doi: https://doi.org/10.30954/2277-9396.01.2018.13.

  26. Ali Z. Zalov, Abel M. Maharramov, Afet T. Huseynova, Kerim A. Kuliev, Kamala O. Isgenderova, Yavar C. Gasimova, Open Acc. J. Sci., 1, No. 4, 97–102 (2017); doi: https://doi.org/10.15406/oajs.2017.01.00019.

    Article  Google Scholar 

  27. T. Kirsipuu, A. Zadorožnaja, J. Smirnova, M. Friedemann, T. Plitz, V. Tõugu, P. Palumaa, Sci. Rep., 10, No. 1, 1–11 (2020); doi: https://doi.org/10.1038/s41598-020-62560-4.

  28. Emine Gül Cansu Ergün, Adnan Kenar, Turkish J. Chem., 42, No. 2, 257–263 (2018); doi: https://doi.org/10.3906/kim-1703-83.

    Article  Google Scholar 

  29. B. M. Sarhan, R. M. Rumez, H. A. Hassan, Ibn Al Haitham, J. Pure Appl. Sci., 26, No. 2, 178–187 (2013); doi: https://doi.org/10.1109/5.771073.

    Article  Google Scholar 

  30. Ahmed N. Al-Hakimi, Fahad Alminderej, Lotfi Aroua, Sadeq K. Alhag, Mohammad Y. Alfaifi, Samir O. M., Jazem A. Mahyoub, Serag Eldin I. Elbehairi, Abrar S. Alnafisah, Arabian J. Chem., 13, No. 10, 7378–7389 (2020); doi: https://doi.org/10.1016/j.arabjc.2020.08.014.

  31. Fathy A. El-Saied, Tarek A. Salem, Mohamad M.E. Shakdofa, Ahmed N. Al-Hakimi, Appl. Organometall. Chem., 32, No. 4, Article ID e4215 (2018); doi: https://doi.org/10.1002/aoc.4215.

  32. Mohammad Azam, Saud I. Al-Resayes, Agata Trzesowska-Kruszynska, Rafal Kruszynski, Faiyaz Shakeel, Saied M. Soliman, Mahboob Alam, Mohammad Rizwan Khan, Saikh Mohammad Wabaidur, J. Mol. Structure, 1201, 1–8 (2020); doi: https://doi.org/10.1016/j.molstruc.2019.127177.

    Article  Google Scholar 

  33. Fathy A. El-saied, Mohamad M. E. Shakdofa, Ahmed N. Al-Hakimi, Adel M.E. Shakdofa, Appl. Organometall. Chem., 34, No. 11, 1–11 (2020); doi: https://doi.org/10.1002/aoc.5898.

  34. R. S. Bhaskar, C. A. Ladole, N. G. Salunkhe, J. M. Barabde, A. S. Aswar, Arabian J. Chem., 13, No. 8, 6559–6567 (2020); doi: https://doi.org/10.1016/j.arabjc.2020.06.012.

    Article  Google Scholar 

  35. K. Buldurun, N. Turan, E. Bursal, A. Mantarcı, F. Turkan, P. Taslimi, I. Gulcin, Res. Chem. Intermed., 46, No. 1, 283–297 (2020); doi: https://doi.org/10.1007/s11164-019-03949-3.

    Article  Google Scholar 

  36. Simon N. Mbugua, Nicole R. S. Sibuyi, Lydia W. Njenga, Ruth A. Odhiambo, Shem O. Wandiga, Mervin Meyer, Roger A. Lalancette, Martin O. Onani, Am. Chem. Soc. Omega, 5, No. 25, 14942–14954 (2020); doi: https://doi.org/10.1021/acsomega.0c00360.

  37. Hassan Keypour, Masoumeh Mahmoudabadi, Amir Shooshtari, Mehdi Bayat, Elham Soltani, Roya Karamian, Seyed Hamed Moazzami Farida, Chem. Data Coll., 26, Article ID 100354 (2020); doi: https://doi.org/10.1016/j.cdc.2020.100354.

  38. Mohamed A. Betiha, Samy B. El-Henawy, Ahmed M. Al-Sabagh, Nabel A. Negm, Tahany Mahmoud, J. Mol. Liquids, 316, Article ID 113862 (2020); doi: https://doi.org/10.1016/j.molliq.2020.113862.

  39. Tahereh Hosseinzadeh Sanatkar, Alireza Khorshidi, Esmail Sohouli, Jan Janczak, Inorg. Chim. Acta, 506, No. 1, Article ID 119537 (2020); doi: https://doi.org/10.1016/j.ica.2020.119537.

  40. Aleksandra Bocian, Maciej Skrodzki, Maciej Kubicki, Adam Gorczyński, Piotr Pawluć, Violetta Patroniak, Appl. Catal. A General, 602, No. 5, Article ID 117665 (2020); doi: https://doi.org/10.1016/j.apcata.2020.117665.

  41. Rafi O. Zaman Brohi, Muhammad Yar Khuhawar, Rasool Bux Mahar, J. Chem. Tech. Biotech., 95, No. 6, 1694–1704 (2020); doi: https://doi.org/10.1002/jctb.6362.

    Article  Google Scholar 

  42. Suhair Mohammed Yaseen, Bushra Basheer Qasim, Naeema Owayed Al-lame, Egyptian J. Chem., 64, No. 2, 673–691 (2021); doi: https://doi.org/10.21608/EJCHEM.2019.13907.1861.

    Article  Google Scholar 

  43. Könül Babayeva, Serkan Demir, Müberra Andac, J. Taibah University Sci., 11, 808–814 (2017); doi: https://doi.org/10.1016/j.jtusci.2017.02.001.

    Article  Google Scholar 

  44. V. Fornea, Ş. Trupină, A. V. Iosub, L. Bulgariu, Bull. Institutului Politehnic Din Iasi, 62, No. 66, 9–20 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elham N. Mezaal.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 91, No. 1, p. 170, January–February, 2024.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mezaal, E.N., Sadiq, K.A. & Rumez, R.M. Spectrophotometric Method for Determination of Cu(II) Using a New Schiff Base Ligand. J Appl Spectrosc 91, 236–245 (2024). https://doi.org/10.1007/s10812-024-01711-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-024-01711-1

Keywords

Navigation