Skip to main content

Advertisement

Log in

Mapping of aridity in the Beni Haroun watershed, eastern Algeria

  • Research
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

In this work, annual precipitation measurements and averages of the maximum temperature of the warmest month and the average of the minimum temperature of the coldest month were used; these data were are extracted from the period 1981–2022 in the Beni Haroun watershed located in eastern Algeria, and were spatially interpolated using deterministic and geostatistical methodologies in a GIS environment. In particular, a comparison was made between inverse distance weighting (IDW) and ordinary kriging (OK) to evaluate the most appropriate technique for reproducing the actual surface. Then, the spatial fluctuation in aridity in the watershed was evaluated using the Emberger index, which is based on annual precipitation measurement data and the averages of the maximum temperature of the warmest month and the averages of the minimum temperature of the coldest month. It is clear that geostatistical approaches provide a more accurate estimations than IDW methods. Specifically, OK was identified as the optimal prediction technique for Emberger quotient data. Furthermore, the spatial distribution of the Emberger quotient showed that the northwestern parts of the basin presented the highest aridity values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abtew W, Obeysekera J, Shih G (1993) Spatial analysis for monthly rainfall in south Florida. Water Resour Bull 29:179–188. https://doi.org/10.1111/j.1752-1688.1993.tb03199.x

    Article  Google Scholar 

  • Afzal P, Alghalandis YF, Khakzad A, Moarefvand P, Omran NR (2011) Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling. J Geochem Explor 108(3):220–232

    Article  CAS  Google Scholar 

  • Araghi A, Martinez CJ, Adamowski J, Olesen JE (2018) Spatiotemporal variations of aridity in Iran using high-resolution gridded data. Int J Climatol 38:2701–2717. https://doi.org/10.1002/joc.5454

    Article  Google Scholar 

  • Arora VK (2002) The use of the aridity index to assess climate change effect on annual runoff. J Hydrol 265(1–4):164–177. https://doi.org/10.1016/S0022-1694(02)00101-4

    Article  Google Scholar 

  • Arslan H (2012) Spatial and temporal mapping of groundwater salinity using ordinary kriging and indicator kriging: The case of Bafra Plain, Turkey. Agric Water Manag 113:57–63. https://doi.org/10.1016/j.agwat.2012.06.015

    Article  Google Scholar 

  • Aschmann H (1973) Distribution and peculiarity of Mediterranean ecosystems. In Mediterranean, type ecosystems: origin and structure. Berlin, Heidelberg: Springer Berlin Heidelberg, pp 11–19

  • Aschmann H (1984) A restrictive definition of Mediterranean climates. Bulletin de la société botanique de France. Actualités Botaniques 131(2–4): 21–30.

  • Bayraktar H, Turalioglu FS (2005) A Kriging-based approach for locating a sampling site—in the assessment of air quality. Stoch Env Res Risk Assess 19:301–305. https://doi.org/10.1007/s00477-005-0234-8

    Article  Google Scholar 

  • Benslama A, Khanchoul K, Benbrahim F, Boubehziz S, Chikhi F, Navarro-Pedreño J (2020) Monitoring the variations of soil salinity in a palm grove in Southern Algeria. Sustainability 12(15):6117. https://doi.org/10.3390/su12156117

    Article  Google Scholar 

  • Borges PA, Franke J, da Anunciação YMT, Weiss H, Bernhofer C (2016) Comparison of spatial interpolation methods for the estimation of precipitation distribution in Distrito Federal, Brazil. Theoret Appl Climatol 123:335–348. https://doi.org/10.1007/s00704-014-1359-9

    Article  ADS  Google Scholar 

  • Burrough PA, McDonnell RA, Lloyd CD (2015) Principles of geographical information systems. Oxford University Press, USA

    Google Scholar 

  • Buttafuoco G, Guagliardi I, Tarvainen T, Jarva J (2017) A multivariate approach to study the geochemistry of urban topsoil in the city of Tampere, Finland. J Geochem Explor 181:191–204. https://doi.org/10.1016/j.gexplo.2017.07.017

    Article  CAS  Google Scholar 

  • Buttafuoco G, Caloiero T, Ricca N, Guagliardi I (2018) Assessment of drought and its uncertainty in a southern Italy area (Calabria region). Measurement 113:205–210. https://doi.org/10.1016/j.measurement.2017.08.007

    Article  ADS  Google Scholar 

  • Chiles JP, Delfiner P (2012) Geostatistics: modeling spatial uncertainty (Vol. 713). John Wiley & Sons. https://doi.org/10.1002/9781118136188

  • Croitoru AE, Piticar A, Imbroane AM, Burada DC (2013) Spatiotemporal distribution of aridity indices based on temperature and precipitation in the extra-Carpathian regions of Romania. Theoret Appl Climatol 112:597–607. https://doi.org/10.1007/s00704-012-0755-2

    Article  ADS  Google Scholar 

  • Dagbert M (2000) Géostatistique pour le calcul des réserves et le contrôle des teneurs. Séminaire pour les professionnels de l’industrie. 3p, Ed. Système Geostat International Inc. Canada.

  • Daget P (1977) Le bioclimat méditerranéen : caractères généraux, modes de caractérisation. Vegetatio 34:1–20

    Article  Google Scholar 

  • De Martonne E (1926) Aerisme, et índices d’aridite. Comptesrendus De L’academie Des Sci 182:1395–1398

    Google Scholar 

  • Deniz A, Toros H, Incecik S (2011) Spatial variations of climate indices in Turkey. Int J Climatol 31(3):394–403. https://doi.org/10.1002/joc.2081

    Article  Google Scholar 

  • Derdous O, Tachi SE, Bouguerra H (2021) Spatial distribution and evaluation of aridity indices in Northern Algeria. Arid Land Res Manag 35(1):1–14. https://doi.org/10.1080/15324982.2020.1796841

    Article  CAS  Google Scholar 

  • Dirks KN, Hay JE, Stow CD, Harris D (1998) High-resolution studies of rainfall on Norfolk Island, Part II: Interpolation of rainfall data. Journal of Hydrology 208 : 187–193/ https://doi.org/10.1016/S0022-1694(98)00155-3.

  • Emberger L (1930) La végétation de la Région Méditerranéenne : Essai d’une classification des groupenments végétaux. Rev Génerale Bot 42:642–662

    Google Scholar 

  • Emberger L (1932) Sur une formule climatique et ses applications en botanique. La Météorologie 92(1932):423–432

    Google Scholar 

  • Emberger L (1942) Un projet de classification des climats du point de vue phytogéographique. Bull De La Société D’histoire Naturelle De Toulouse 77:97–124

    Google Scholar 

  • Emberger L (1955) Une classification biogéographique des climats. Recueil, travaux de laboratoire géolo-zoologique. Faculté Des Sciences Service Botanique Montpellier 7:3–43

    Google Scholar 

  • Emberger L (1943) Les limites de l'aire de végétation méditerranéenne en France. Les frères Douladoure.

  • Fotheringham AS, O’Kelly ME (1989) Spatial Interaction Model: Formulations and Applications Dordrecht: Kluwer Academic Publishers 1:989

    Google Scholar 

  • Gavilán RG (2005) The use of climatic parameters and indices in egetation distribution. A case study in the Spanish Sistema Central. Int J Biometeorol 50:111–120. https://doi.org/10.1007/s00484-005-0271-5

    Article  PubMed  Google Scholar 

  • Gebremedhin MA, Kahsay GH, Fanta HG (2018) Assessment of spatial distribution of aridity indices in Raya valley, northern Ethiopia. Appl Water Sci 8:1–8. https://doi.org/10.1007/s13201-018-0868-6

    Article  Google Scholar 

  • Giacobbe A (1938) Schema di una teoria ecologica per la classificazione della vegetazione italiana. Plant Biosystem 45(2):37–121

    Google Scholar 

  • Goovaerts P (2000) Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J Hydrol 228(1–2):113–129. https://doi.org/10.1016/S0022-1694(00)00144-X

    Article  Google Scholar 

  • Gundogdu KS, Guney I (2007) Spatial analyses of groundwater levels using universal kriging. J Earth Syst Sci 116:49–55. https://doi.org/10.1007/s12040-007-0006-6

    Article  ADS  Google Scholar 

  • Guo-Shun L, Hou-Long J, Shu-Duan L, Xin-Zhong W, Hong-Zhi S, Yong-Feng Y, ... Jian-Guo G (2010) Comparison of kriging interpolation precision with different soil sampling intervals for precision agriculture. Soil science 175(8): 405–415. https://doi.org/10.18393/ejss.2016.1.062-073

  • Haider S, Adnan S (2014) Classification and assessment of aridity over Pakistan provinces (1960–2009). International Journal of Environment 3:24–35. https://doi.org/10.3126/ije.v3i4.11728

    Article  Google Scholar 

  • Hormozi H, Hormozi E, Nohooji HR (2012) The classification of the applicable machine learning methods in robot manipulators. Int J Machine Learning Comp 2(5):560. https://doi.org/10.7763/ijmlc.2012.v2.189

    Article  Google Scholar 

  • Hrnjak I, Lukić T, Gavrilov MB, Marković SB, Unkašević M, Tošić I (2014) Aridity in Vojvodina, Serbia. Theoret Appl Climatol 115:323–332. https://doi.org/10.1007/s00704-013-0893-1

    Article  ADS  Google Scholar 

  • Hutchinson MF (1995) Interpolating mean rainfall using thin plate smoothing splines. Int J Geogr Inf Syst 9(4):385–403. https://doi.org/10.1080/02693799508902045

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: mitigation. Contribution of Working Group III to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.

  • Jalili Pirani F, Modarres R (2020) Geostatistical and deterministic methods for rainfall interpolation in the Zayandeh Rud basin. Iran Hydrological Sciences Journal 65(16):2678–2692. https://doi.org/10.1080/02626667.2020.1833014

    Article  Google Scholar 

  • Kabour A, Chebbah L (2024) Highlighting climate change by applying statistical tests and climate indices to the temperature of Kébir Rhumel watershed, Algeria. Theor Appl Climatol 155:805–814. https://doi.org/10.1007/s00704-023-04660-5

    Article  ADS  Google Scholar 

  • Kafle HK, Bruins HJ (2009) Climatic trends in Israel 1970–2002: warmer and increasing aridity inland. Clim Change 96(1–2):63–77. https://doi.org/10.1007/s10584-009-9578-2

    Article  ADS  Google Scholar 

  • Kavianpoor H, Ouri AE, Jeloudar ZJ, Kavian A (2012) Spatial variability of some chemical and physical soil properties in Nesho Mountainous Rangelands. Am J Environ Eng 2(1):34–44. https://doi.org/10.5923/j.ajee.20120201.06

    Article  Google Scholar 

  • Kenny GJ, Ye W, Flux T, Warrick RA (2001) Climate variations and New Zealand agriculture: the CLIMPACTS system and issues of spatial and temporal scale. Environ Int 27(2–3):189–194. https://doi.org/10.1016/S0160-4120(01)00081-2

    Article  CAS  PubMed  Google Scholar 

  • Khodakarami L, Soffianian AR, Mohamadi Towfigh E, Mirghafari NA (2011) Study of heavy metals concentration Copper, Zinc and Arsenic soil using GIS and RS techniques (Case study: Kaboudarahang, Razan and Khonjin- Talkhab catchment in Hamedan province). J App RS & GIS Tech Natural Res Sci 2(1):79–89

    Google Scholar 

  • Kitanidis PK (1997) Introduction to geostatistics: applications in hydrogeology. Cambridge University Press

    Book  Google Scholar 

  • Köppen W (1918) Une nouvelle classification générale des climats. Rev Gen Sc 30:550–554

    Google Scholar 

  • Koussa M, Bouziane MT (2018) Apport de SIG a la cartographie des zones à risque d’érosion hydrique dans le bassin versant de Beni Haroun, Mila. Algérie Geo-Eco-Trop 42(1):43–56

    Google Scholar 

  • Krige D G (1994) An analysis of some essential basic tenets of geostatistics not always practised in ore valuations. In Proceedings of the Regional APCOM, Slovenia.

  • Lang R (1920) Verwitterung und Bodenbildung als Einführung in die Bodenkunde. Schweizerbart Science Publishers, Stuttgart

    Google Scholar 

  • Lee CS, Sohn E, Park JD, Jang JD (2019a) Estimation of soil moisture using deep learning based on satellite data: A case study of South Korea. Giscience & Remote Sensing 56(1):43–67. https://doi.org/10.1080/15481603.2018.1489943

    Article  Google Scholar 

  • Lee Y, Jung C, Kim S (2019b) Spatial distribution of soil moisture estimates using a multiple linear regression model and Korean geostationary satellite (COMS) data. Agric Water Manag 213:580–593. https://doi.org/10.1016/j.agwat.2018.09.004

    Article  Google Scholar 

  • Le-Houérou H N, Claudin J, Pouget M (1977) Étude bioclimatique des steppes algériennes avec une carte bioclimatique au 1/1 000 000. Le Bulletin de la Société d’histoire naturelle d’Afrique du Nord : 36–40.

  • Li HY, Webster R, Shi Z (2015) Mapping soil salinity in the Yangtze delta: REML and universal kriging (E-BLUP) revisited. Geoderma 237:71–77. https://doi.org/10.1016/j.geoderma.2014.08.008

    Article  ADS  CAS  Google Scholar 

  • Lloyd C (2005) Assessing the effect of integrating elevation data into the estimation of monthly precipitation in Great Britain. J Hydrol 308(1–4):128–150. https://doi.org/10.1016/j.jhydrol.2004.10.026/

    Article  Google Scholar 

  • Ly S, Charles C, Degré A (2011) Geostatistical interpolation of daily rainfall at catchment scale: The use of several variogram models in the Ourthe and Ambleve catchments, Belgium. Hydrol Earth Syst Sci 15:2259–2274. https://doi.org/10.5194/hess-15-2259-2011

    Article  ADS  Google Scholar 

  • Matheron G (1967) Kriging or polynomial interpolation procedures. CIMM Transactions 70(1):240–244

    MathSciNet  Google Scholar 

  • Medhioub E, Bouaziz M, Bouaziz S (2019) Spatial estimation of soil organic matter content using remote sensing data in southern Tunisia. In Advances in Remote Sensing and Geo Informatics Applications: Proceedings of the 1st Springer Conference of the Arabian Journal of Geosciences (CAJG-1), Tunisia 2018, pp 215–217.

  • Mirás-Avalos JM, Paz-González A, Vidal-Vázquez E, Sande-Fouz P (2007) Mapping monthly rainfall data in Galicia (NW Spain) using inverse distances and geostatistical methods. Adv Geosci 10:51–57. https://doi.org/10.5194/adgeo-10-51-2007

    Article  Google Scholar 

  • Moral FJ (2010) Comparison of different geostatistical approaches to map climate variables: application to precipitation. Int J Climatol: J Royal Meteorol Soc 30(4):620–631. https://doi.org/10.1002/joc.1913

    Article  Google Scholar 

  • Moral FJ, Rebollo FJ, Paniagua LL, García-Martín A, Honorio F (2016) Spatial distribution and comparison of aridity indices in Extremadura, southwestern Spain. Theoret Appl Climatol 126:801–814. https://doi.org/10.1007/s00704-015-1615-7

    Article  ADS  Google Scholar 

  • Paltineanu C, Tanasescu N, Chitu E, Mihailescu IF (2007) Relationships between the De Martonne aridity index and water requirements of some representative crops: A case study from Romania. International Agrophysics 21:81–93

    Google Scholar 

  • Paz-Gonzalez A, Vieira SR, Castro MTT (2000) The effect of cultivation on the spatial variability of selected properties of an umbric horizon. Geoderma 97(3–4):273–292. https://doi.org/10.1016/S0016-7061(00)00066-5

    Article  ADS  CAS  Google Scholar 

  • Pearson K (1895) VII. Note on regression and inheritance in the case of two parents. Proceedings of the royal society of London 58(347–352): 240–242.

  • Pellicone G, Caloiero T, Modica G, Guagliardi I (2018) Application of several spatial interpolation techniques to monthly rainfall data in the Calabria region (southern Italy). Int J Climatol 9:3651–3666. https://doi.org/10.1002/joc.5525

    Article  Google Scholar 

  • Plouffe CCF, Robertson C, Chandrapala L (2015) Comparing interpolation techniques for monthly rainfall mapping using multiple evaluation criteria and auxiliary data sources: A case study of Sri Lanka. Environ Model Softw 67:57–71. https://doi.org/10.1016/j.envsoft.2015.01.011

    Article  Google Scholar 

  • Price DT, McKenney DW, Nalder IA, Hutchinson MF, Kesteven JL (2000) A comparison of two statistical methods for spatial interpolation of Canadian monthly mean climate data. Agric for Meteorol 101:81–94. https://doi.org/10.1016/S0168-1923(99)00169-0

    Article  ADS  Google Scholar 

  • Taibi S, Meddi M, Souag D, Mahé G (2013) Évolution et régionalisation des précipitations au nord de l’Algérie (1936–2009). Climate and Land Surface Changes in Hydrol, IAHS Publ 359:191–197

    Google Scholar 

  • Teegavarapu RS, Aly A, Pathak CS, Ahlquist J, Fuelberg H, Hood J (2018) Infilling missing precipitation records using variants of spatial interpolation and data-driven methods: use of optimal weighting parameters and nearest neighbour-based corrections. Int J Climatol 38(2):776–793. https://doi.org/10.1002/joc.5209

    Article  Google Scholar 

  • Toros H (2012) Spatio-temporal precipitation change assessments over Turkey. Int J Climatol 32(9):1310–1325. https://doi.org/10.1002/joc.2353

    Article  Google Scholar 

  • UNEP (1992) World atlas of desertification. Edward Arnold, London

    Google Scholar 

  • UNESCO (1979) Map of the world distribution of arid regions. Explanatory note, Man and Biosphere (MAB). Paris: UNESCO.

  • Wackernagel H (1994) Cokriging versus kriging in regionalized multivariate data analysis. Geoderma 62(1–3):83–92. https://doi.org/10.1016/0016-7061(94)90029-9

    Article  ADS  Google Scholar 

  • Weckernagel H (1995) Multivariate geostatistics.

  • Xu W, Zou Y, Zhang G, Linderman M (2015) A comparison among spatial interpolation techniques for daily rainfall data in Sichuan Province, China. Int J Climatol 35:2898–2907. https://doi.org/10.1002/joc.4180

    Article  Google Scholar 

  • Zhang X, Srinivasan R (2009) GIS-based spatial precipitation estimation: a comparison of geostatistical approaches 1. JAWRA J Am Water Res Ass 45(4):894–906. https://doi.org/10.1111/j.1752-1688.2009.00335.x

    Article  Google Scholar 

  • Zubler EM, Scherrer SC, Croci-Maspoli M, Liniger MA, Appenzeller C (2014) Key climate indices in Switzerland; expected changes in a future climate. Clim Change 123:255–271. https://doi.org/10.1007/s10584-013-1041-8

    Article  ADS  Google Scholar 

Download references

Funding

No funding was obtained for this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design and development of the study. Material preparation, data collection and analysis were carried out by Koussa Miloud, Berhail Sabri.

Corresponding author

Correspondence to Koussa Miloud.

Ethics declarations

All the authors have read, understood, and have complied as applicable with the statement on "Ethical responsibilities of Authors" as found in the Instructions for Authors.

The authors did not receive support from any organization for the submitted work.

No funding was received to assist with the preparation of this manuscript.

No funding was received for conducting this study.

No funds, grants, or other support was received.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miloud, K. Mapping of aridity in the Beni Haroun watershed, eastern Algeria. Theor Appl Climatol (2024). https://doi.org/10.1007/s00704-024-04918-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00704-024-04918-6

Navigation