Skip to main content
Log in

Transition Metal (Zn(II), Co(II), Cu(II), Ni(II)) Complexes for the Removal of Acidic Sulfur Impurities from Hydrocarbon Fuel

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

The review addresses the main approaches to desulfurization of hydrocarbon products by adsorption methods. Examples of the use of various supports (metal-organic frameworks, various porous carbons, silica, and alumina) for the removal of acidic sulfur components from gas and liquid hydrocarbons are presented. Modification of the supports with transition metals, oxides, salts, and complex compounds to remove hydrogen sulfide and thiols from hydrocarbon raw materials is substantiated. The environmental friendliness and lower energy consumption for the use of silica gel modified with Zn(II), Co(II), Ni(II), and Cu(II) carboxylates to refine hydrocarbon fuel are demonstrated. A comparison of the theoretical calculations (DFT) with experimental results attests to good agreement between the data. The choice of the parameters for silica gel surface modification with metal carboxylates is discussed, including pore size of the support, time and power of the ultrasonic treatment for the support impregnation with solutions of complexes, optimal concentration of transition metal complexes, effect of the geometry of complexes on their adsorption and on the absorption of acidic sulfur components, and so on. According to quantum chemical calculations and experimental results, metal sulfides are formed as the final products of reactions of both hydrogen sulfide and thiols with metal carboxylates. Zinc pivalate is proposed as the most promising modifier for silica, which not only efficiently removes sulfur impurities, but also gives rise to nontoxic zinc sulfide supported on silica gel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

REFERENCES

  1. Hatanaka, S., Catal. Surv. Asia, 2005, vol. 9, no. 2, pp. 87–93. https://doi.org/10.1007/s10563-005-5994-0

    Article  CAS  Google Scholar 

  2. Gheni, S.A., Awad, S.A. Ahmed, S.M.R., Abdullah, G.H., and Al Dahhan, M., RSC Adv., 2020, vol. 10, no. 56, pp. 33911–33927. https://doi.org/10.1039/D0RA05748G

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  3. Tanimu, A. and Alhooshani, K., Energy Fuels, 2019, vol. 33, no. 4, pp. 2810–2838. https://doi.org/10.1021/acs.energyfuels.9b00354

    Article  CAS  Google Scholar 

  4. Zhu, H., Yu, Y., Li, G., Lu, X., Liu, D., Ding, X., Zhao, L., Chi, Y., and Guo, W.J., Phys. Chem., vol. 124, no. 1, pp. 446–458. https://doi.org/10.1021/acs.jpcc.9b08532

  5. Mochida, I. and Choi, K.-H., J. Jpn. Petrol. Inst., 2004, vol. 47, no. 3, pp. 145–163. https://doi.org/10.1627/jpi.47.145

    Article  CAS  Google Scholar 

  6. Dehkordi, A.M., Sobati, M.A., and Nazem, M.A., Chin. J. Chem. Eng., 2009, vol. 17, no. 5, pp. 869–874. https://doi.org/10.1016/S1004-9541(08)60289-X

    Article  CAS  Google Scholar 

  7. Eco-Friendly Energy Processes and Technologies for Achieving Sustainable Development, Danish, M.S.S. and Senjyu, T.S., Eds., Wang, Y., Series Ed.; IGI Global, 2021. https://doi.org/10.4018/978-1-7998-4915-5

  8. Rajendran, A., Cui, T., Fan, H., Yang, Z., Feng, J., and Li, W.J., Mater. Chem. A, 2020, vol. 8, no. 5, pp. 2246–2285. https://doi.org/10.1039/C9TA12555H

    Article  CAS  Google Scholar 

  9. Zhang, X.-F., Wang, Z., Feng, Y., Zhong, Y., Liao, J., Wang, Y., and Yao, J., Fuel, 2018, vol. 234, p. 256. https://doi.org/10.1016/j.fuel.2018.07.035

    Article  CAS  Google Scholar 

  10. Kim, J.H., Ma, X., Zhou, A., and Song, C., Catalysis Today, 2006, vol. 111, nos. 1–2, pp. 74–83. https://doi.org/10.1016/j.cattod.2005.10.017

    Article  CAS  Google Scholar 

  11. Srivastava, V.C., RSC Adv., 2012, vol. 2, no. 3, pp. 759–783. https://doi.org/10.1039/C1RA00309G

    Article  ADS  Google Scholar 

  12. Craven, M., Xiao, D., Kunstmann-Olsen, C., Kozhevnikova, E.F., Blanc, F., Steiner, A., and Kozhevnikov, I.V., Appl. Cat., B, 2018, vol. 231, p. 82. https://doi.org/10.1016/j.apcatb.2018.03.005

    Article  CAS  Google Scholar 

  13. Eseva, E.A., Akopyan, A.V., Anisimov, A.V., and Maksimov, A.L., Neftekhimiya, 2020, vol. 60, no. 5, p. 586. https://doi.org/10.31857/S0028242120050093

    Article  Google Scholar 

  14. Solov’ev, V.O., Zakhodyaeva, Yu.A., and Voshkin, A.A., Theor. Found. Chem. Eng., 2020, vol. 54, no. 5, p. 894. https://doi.org/10.31857/S0040357120050188

    Article  Google Scholar 

  15. Jeong, K.-E., Kim, T.-W., Kim, J.-W., Chae, H.-J., Kim, C.-U., Park, Y.-K., and Jeong, S.-Y., Korean J., Chem. Eng., 2013, vol. 30, no. 3, pp. 509–517. https://doi.org/10.1007/s11814-013-0025-8

    Article  CAS  Google Scholar 

  16. Li, J., Yang, Z., Li, S., Jin, Q., and Zhao, J., J. Ind. Eng. Chem., 2020, vol. 82, p. 1. https://doi.org/10.1016/j.jiec.2019.10.020

    Article  CAS  Google Scholar 

  17. Lima, F., Gouvenaux, J., Branco, L.C., Silvestre, A.J.D., and Marrucho, I.M., Fuel, 2018, vol. 234, p. 414. https://doi.org/10.1016/j.fuel.2018.07.043

    Article  CAS  Google Scholar 

  18. Gao, J., Zhu, S., Dai, Y., Xiong, C., Li, C., Yang, W., and Jiang, X., Fuel, 2018, vol. 233, p. 704. https://doi.org/10.1016/j.fuel.2018.06.101

    Article  CAS  Google Scholar 

  19. Królikowski, M., J. Chem. Therm., 2019, vol. 131, p. 460. https://doi.org/10.1016/j.jct.2018.10.009

    Article  CAS  Google Scholar 

  20. Zakhodyaeva, Yu.A., Solov’ev, V.O., Zinov’eva, I.V., Rudakov, D.G., Timoshenko, A.V., and Voshkin, A.A., Theor. Found. Chem. Eng., 2019, vol. 53, no. 4, p. 550. https://doi.org/10.1134/S0040357119040146

    Article  CAS  Google Scholar 

  21. Burant, A., Lowry, G.V., and Karamalidis, A.K., Chemosphere, 2016, vol. 144, p. 2247. https://doi.org/10.1016/j.chemosphere.2015.10.115

    Article  CAS  PubMed  ADS  Google Scholar 

  22. Saha, B. and Sengupta, S., Energy Fuels, 2017, vol. 31, no. 1, p. 996. https://doi.org/10.1021/acs.energyfuels.6b01842

    Article  CAS  Google Scholar 

  23. Abin-Fuentes, A., Mohamed, M.E.S. Wang, D.I.C., and Prather, K.L., J. Appl. Environ. Microbiol., 2013, vol. 79, no. 24, pp. 7807–7817. https://doi.org/10.1128/AEM.02696-13

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  24. Villaseñor, F., Loera, O., Campero, A., and Viniegra-Gonzalez, G., Fuel Process. Technol., 2004, vol. 86, no. 1, pp. 49–59. https://doi.org/10.1016/j.fuproc.2003.12.007

    Article  CAS  Google Scholar 

  25. Patidar, R., Khanna, S., and Moholkar, V.S., Ultrason. Sonochem., 2012, vol. 19, no. 1, pp. 104–118. https://doi.org/10.1016/j.ultsonch.2011.06.005

    Article  CAS  PubMed  Google Scholar 

  26. Malani, R.S., Khanna, S., Chakma, S., and Moholkar, V.S., Ultrason. Sonochem., 2014, vol. 21, no. 4, pp. 1400–1406. https://doi.org/10.1016/j.ultsonch.2014.01.028

    Article  CAS  PubMed  Google Scholar 

  27. Leong, T.S.H., Wooster, T.J., Kentish, S.E., and Ashokkumar, M., Ultrason. Sonochem., 2009, vol. 16, no. 6, pp. 721–727. https://doi.org/10.1016/j.ultsonch.2009.02.008

    Article  CAS  PubMed  Google Scholar 

  28. Gopinath, R., Dalai, A.K., and Adjaye, J., Energy Fuels, 2006, vol. 20, no. 1, pp. 271–277. https://doi.org/10.1021/ef050231x

    Article  CAS  Google Scholar 

  29. Sivasankar, T. and Moholkar, V.S., Ultrason. Sonochem., 2009, vol. 16, no. 6, pp. 769–781. https://doi.org/10.1016/j.ultsonch.2009.02.009

    Article  CAS  PubMed  Google Scholar 

  30. Margeta, D., Sertic-Bionda, K., and Foglar, L., Applied Acoustics, 2016, vol. 103, p. 202. https://doi.org/10.1016/j.apacoust.2015.07.004

    Article  Google Scholar 

  31. Anisimov, A.V. and Tarakanova, A.V., Russ. J. Gen. Chem., 2009, vol. 79, no. 6, p. 1264. https://doi.org/10.1134/S1070363209060437

    Article  CAS  Google Scholar 

  32. Rahimi, M., Shahhosseini, S., and Movahedirad, S., Ultrason. Sonochem., 2017, vol. 39, p. 611. https://doi.org/10.1016/j.ultsonch.2017.05.033

    Article  CAS  PubMed  Google Scholar 

  33. Ganiyu, S.A. and Lateef, S.A., Fuel, 2021, vol. 294, p. 120273. https://doi.org/10.1016/j.fuel.2021.120273

    Article  CAS  Google Scholar 

  34. Saha, B., Vedachalam, S., and Dalai, A.K., Fuel Process. Technol., 2021, vol. 214, p. 106685. https://doi.org/10.1016/j.fuproc.2020.106685

    Article  CAS  Google Scholar 

  35. Crandall, B.S., Zhang, J., Stavila, V., Allendorf, M.D., and Li, Z., Ind. Eng. Chem. Res., 2019, vol. 58, no. 42, pp. 19322–19352. https://doi.org/10.1021/acs.iecr.9b03183

    Article  CAS  Google Scholar 

  36. Bellat, J.P., Benoit, F., Weber, G., Paulin, C., Mougin, P., and Thomas, M., Adsorption, 2008, vol. 14, no. 4, pp. 501–507. https://doi.org/10.1007/s10450-008-9136-7

    Article  CAS  Google Scholar 

  37. Shirani, B., Kaghazchi, T., and Beheshti, M., Korean J. Chem. Eng., 2010, vol. 27, no. 1, pp. 253–260. https://doi.org/10.1007/s11814-009-0327-z

    Article  CAS  Google Scholar 

  38. Wang, S. and Peng, Y., Chem. Eng. J., 2010, vol. 156, no. 1, pp. 11–24. https://doi.org/10.1016/j.cej.2009.10.029

    Article  CAS  Google Scholar 

  39. Wiheeb, A., Shamsudin, I., Azmier, M., Murat, M., Kim, J., and Othman, M.R., Rev. Chem. Eng., 2013, vol. 29. https://doi.org/10.1515/revce-2013-0017

  40. Tohidi, Z., Fatemi, S., and Qazvini, O.T., J. Nat. Gas Sci. Eng., 2015, vol. 26, p. 758. https://doi.org/10.1016/j.jngse.2015.07.010

    Article  CAS  Google Scholar 

  41. Habeeb, O.A., Kanthasamy, R., Ali, G.A.M., Sethupathi, S., and Yunus, R.B.M., Rev. Chem. Eng., 2018, vol. 34, no. 6, pp. 837–854. https://doi.org/10.1515/revce-2017-0004

    Article  CAS  Google Scholar 

  42. Ahmad, W., Sethupathi, S., Kanadasan, G., Lau, L.C., and Kanthasamy, R., Rev. Chem. Eng., 2021, vol. 37, no. 3, pp. 407–431. https://doi.org/10.1515/revce-2018-0048

    Article  CAS  Google Scholar 

  43. Browning, W.C. and Young, H.F., US Patent 3928211A, 1975.

  44. Carney, L.L., US Patent, 4252655A, 1981.

  45. Devereux, T. and Woodman, C., US Patent 20080039344A1, 2008.

  46. Buras, P.J., Lee, W., and Butler, J.R., WO 2005065177A3, 2007.

  47. Stark, J.L., Draper, J.D., Biggerstaff, P.J., and Wolfe, D.L., WO 2013059460A1, 2013.

  48. Martin, J.-V., WO 2015116864A1, 2015.

  49. Carney, L.L. and Jones, B., OnePetro, 1974. https://doi.org/10.2118/5198-MS

  50. Amosa, M.K., Mohammed, I.A., and Yaro, S.A., 2010.

  51. Ahmed, A., Onaizi, S.A., and Elkatatny, S., ACS Omega, 2022, vol. 7, no. 32, pp. 28361–28368. https://doi.org/10.1021/acsomega.2c02890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Huang, Y., Su, W., Wang, R., and Zhao, T., Aerosol Air Qual. Res., 2019, vol. 19, no. 9, pp. 2130–2150. https://doi.org/10.4209/aaqr.2019.04.0215

    Article  CAS  Google Scholar 

  53. Bashkova, S., Bagreev, A., and Bandosz, T.J., Environ. Sci. Technol., 2002, vol. 36, no. 12, pp. 2777–2782. https://doi.org/10.1021/es011416v

    Article  CAS  PubMed  ADS  Google Scholar 

  54. Cui, H., Turn, S.Q., and Reese, M.A., Cat. Today, 2009, vol. 139, no. 4, pp. 274–279. https://doi.org/10.1016/j.cattod.2008.03.024

    Article  CAS  Google Scholar 

  55. Conti-Ramsden, M.G., Asghar, H.M.A., Hussain, S.N., Roberts, E.P.L., and Brown, N.W., Water Sci. Technol., vol. 66, no. 9, pp. 1849−1855. https://doi.org/10.2166/wst.2012.383

  56. Shi, L., Yang, K., Zhao, Q., Wang, H., Cui, Q., Shi, L. Yang, K., Zhao, Q., Wang, H., and Cui, Q., Characterization and mechanisms of H2S and SO2 adsorption by activated carbon, Energy Fuels, 2015, vol. 29, no. 10, pp. 6678–6685. https://doi.org/10.1021/acs.energyfuels.5b01696

    Article  CAS  Google Scholar 

  57. Iliuta, M.C. and Larachi, F.J., Chem. Eng. Data, 2007, vol. 52, no. 1, pp. 2–19. https://doi.org/10.1021/je060263u

    Article  CAS  Google Scholar 

  58. Sun, X., Ruan, H., Song, X., Sun, L., Li, K., Ning, P., and Wang, C., RSC Adv., 2018, vol. 8, no. 13, pp. 6996–7004. https://doi.org/10.1039/C7RA12086A

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  59. Areerob, Y., Nguyen, D.C.T., Dowla, B.M.R., Kim, H., Cha, J.-W., and Oh, W.-C., J. Korean Ceram. Soc., 2018, vol. 55, no. 5, pp. 473–479. https://doi.org/10.4191/kcers.2018.55.5.02

    Article  CAS  Google Scholar 

  60. Kwon, J.-M., Moon, J.-H., Bae, Y.-S., Lee, D.-G., Sohn, H.-C., and Lee, C.-H., ChemSusChem, 2008, vol. 1, no. 4, pp. 307–309. https://doi.org/10.1002/cssc.200700011

    Article  CAS  PubMed  Google Scholar 

  61. Belmabkhout, Y., De Weireld, G., and Sayari, A., Langmuir, 2009, vol. 25, no. 23, pp. 13275–13278. https://doi.org/10.1021/la903238y

    Article  CAS  PubMed  Google Scholar 

  62. Belmabkhout, Y., Heymans, N., and De Weireld, G., Energy Fuels, 2011, vol. 25, no. 3, pp. 1310–1315. https://doi.org/10.1021/ef1015704

    Article  CAS  Google Scholar 

  63. Ozekmekci, M., Salkic, G., and Fellah, M.F., Fuel Process. Technol., 2015, vol. 139, p. 49. https://doi.org/10.1016/j.fuproc.2015.08.015

    Article  CAS  Google Scholar 

  64. Chen, G., Tan, S., Koros, W.J., and Jones, C.W., Energy Fuels, 2015, vol. 29, no. 5, pp. 3312–3321. https://doi.org/10.1021/acs.energyfuels.5b00305

    Article  CAS  Google Scholar 

  65. Chen, Z., Ling, L., Wang, B., Fan, H., Shangguan, J., and Mi, J., Appl. Surf. Sci., 2016, vol. 387, p. 483. https://doi.org/10.1016/j.apsusc.2016.06.078

    Article  CAS  ADS  Google Scholar 

  66. Zárate, J.A., Sánchez-González, E., Jurado-Vázquez, T., Gutiérrez-Alejandre, A., González-Zamora, E., Castillo, I., Maurin, G., and Ibarra, I.A., Chem. Commun., 2019, vol. 55, no. 21, pp. 3049–3052. https://doi.org/10.1039/C8CC09379B

    Article  Google Scholar 

  67. Garces, H.F., Espinal, A.E., and Suib, S.L.J., Phys. Chem. C, 2012, vol. 116, no. 15, pp. 8465–8474. https://doi.org/10.1021/jp210755t

    Article  CAS  Google Scholar 

  68. Pahalagedara, L.R., Poyraz, A.S., Song, W., Kuo, C.-H., Pahalagedara, M.N., Meng, Y.-T., and Suib, S.L., Chem. Mater., 2014, vol. 26, no. 22, pp. 6613–6621. https://doi.org/10.1021/cm503405a

    Article  CAS  Google Scholar 

  69. Ling, K., Gangoli, V.S., and Barron, A.R., Energy Fuels, 2019, vol. 33, no. 8, pp. 7509–7521. https://doi.org/10.1021/acs.energyfuels.9b01012

    Article  CAS  Google Scholar 

  70. Wang, X., Ma, X., Sun, L., and Song, C.A., Green Chem., vol. 9, no. 6, pp. 695–702. https://doi.org/10.1039/B614621J

  71. Blatt, O., Helmich, M., Steuten, B., Hardt, S., Bathen, D., and Wiggers, H., Chem. Eng. Technol., 2014, vol. 37, no. 11, p. 1938. https://doi.org/10.1002/ceat.201400303

    Article  CAS  Google Scholar 

  72. Adib, F., Bagreev, A., and Bandosz, T.J., J. Colloid Interface Sci., 1999, vol. 216, no. 2, pp. 360–369. https://doi.org/10.1006/jcis.1999.6335

    Article  CAS  PubMed  ADS  Google Scholar 

  73. Bandosz, T.J., J. Colloid Interface Sci., 2002, vol. 246, no. 1, pp. 1–20. https://doi.org/10.1006/jcis.2001.7952

    Article  CAS  PubMed  ADS  Google Scholar 

  74. Bagreev, A., Adib, F., and Bandosz, T.J., Carbon, 2001, vol. 39, no. 12, p. 1897. https://doi.org/10.1016/S0008-6223(00)00317-1

    Article  CAS  Google Scholar 

  75. Adib, F., Bagreev, A., and Bandosz, T.J., Environ. Sci. Technol., 2000, vol. 34, no. 4, pp. 686–692. https://doi.org/10.1021/es990341g

    Article  CAS  ADS  Google Scholar 

  76. Habeeb, O., Kanthasamy, R., Ali, G., Yunus, R., Olalere, O., and Thanusha, T., Aust. J. Basic Appl. Sci., 2016, vol. 10, p. 136.

    CAS  Google Scholar 

  77. Liang, M., Zhang, C., and Zheng, H., Adsorption, 2014, vol. 20, no. 4, pp. 525–531. https://doi.org/10.1007/s10450-013-9591-7

    Article  CAS  Google Scholar 

  78. Mendiratta, S. and Ali, A.A.A., Nanomaterials (Basel), 2020, vol. 10, no. 6, p. 1116. https://doi.org/10.3390/nano10061116

    Article  CAS  PubMed  Google Scholar 

  79. Huang, G., He, E., Wang, Z., Fan, H., Shangguan, J., Croiset, E., and Chen, Z., Ind. Eng. Chem. Res., 2015, vol. 54, no. 34, pp. 8469–8478. https://doi.org/10.1021/acs.iecr.5b01398

    Article  CAS  Google Scholar 

  80. Förster, H. and Schuldt, M., J. Colloid Interface Sci., 1975, vol. 52, no. 2, pp. 380–385. https://doi.org/10.1016/0021-9797(75)90213-1

    Article  ADS  Google Scholar 

  81. Karge, H.G. and Raskó, J., J. Colloid Interface Sci., 1978, vol. 64, no. 3, pp. 522–532. https://doi.org/10.1016/0021-9797(78)90394-6

    Article  ADS  Google Scholar 

  82. Yang, J.H., Korean J. Chem. Eng. Sci., 2021, vol. 38, no. 4, pp. 674–691. https://doi.org/10.1007/s11814-021-0755-y

    Article  CAS  Google Scholar 

  83. Sui, R., Lesage, K.L., Carefoot, S.K., Fürstenhaupt, T., Rose, C.J., and Marriott, R.A., Langmuir, 2016, vol. 32, no. 36, pp. 9197–9205. https://doi.org/10.1021/acs.langmuir.6b02497

    Article  CAS  PubMed  Google Scholar 

  84. Guo, Y.-H., Pan, G.-X., Xu, M.-H., Wu, T., and Wang, Y.-Y., Clays Clay Miner., 2019, vol. 57, no. 4, pp. 325–333. https://doi.org/10.1007/s42860-019-00030-3

    Article  CAS  ADS  Google Scholar 

  85. Yang, C., Wang, Y., Fan, H., de Falco, G., Yang, S., Shangguan, J., and Bandosz, T.J., Appl. Catal., B, 2020, vol. 266, p. 118674. https://doi.org/10.1016/j.apcatb.2020.118674

    Article  CAS  Google Scholar 

  86. Asfaram, A., Ghaedi, M., Ahmadi Azqhandi, M.H., Goudarzi, A., and Hajati, S., J. Ind. Eng. Chem., 2017, vol. 54, p. 377. https://doi.org/10.1016/j.jiec.2017.06.018

    Article  CAS  Google Scholar 

  87. Kamarudin, K.S., Mat, H., and Hamdan, H., Proceeding of Annual Fundamental Science Seminar, 2003 ,2003.

  88. Abdullah, A.H., Mat, R., Somderam, S., Abd Aziz, A.S., and Mohamed, A., J. Ind. Eng. Chem., 2018, vol. 65, p. 334. https://doi.org/10.1016/j.jiec.2018.05.003

    Article  CAS  Google Scholar 

  89. Sadegh-Vaziri, R. and Babler, M.U., Appl. Sci., 2019, vol. 9, no. 24, p. 5316. https://doi.org/10.3390/app9245316

    Article  CAS  Google Scholar 

  90. Chen, Q., Wang, Z., Long, D., Liu, X., Zhan, L., Liang, X., Qiao, W., and Ling, L., Ind. Eng. Chem. Res., 2010, vol. 49, no. 7, pp. 3152–3159. https://doi.org/10.1021/ie901223j

    Article  CAS  Google Scholar 

  91. Fauteux-Lefebvre, C., Abatzoglou, N., Blais, S., Braidy, N., and Hu, Y., Carbon, 2015, vol. 95, p. 794. https://doi.org/10.1016/j.carbon.2015.08.117

    Article  CAS  Google Scholar 

  92. Vlasaty, V. and Cao, D.Q., WO 2008019320A2, 2008.

  93. Yi, H., Tao, T., Zhao, S., Yu, Q., Gao, F., Zhou, Y., and Tang, X., Environ. Technol. Innovation, 2020, vol. 21, p. 101349. https://doi.org/10.1016/j.eti.2020.101349

    Article  CAS  Google Scholar 

  94. Balsamo, M., Cimino, S., de Falco, G., Erto, A., and Lisi, L., Chem. Eng. J., 2016, vol. 304, p. 399. https://doi.org/10.1016/j.cej.2016.06.085

    Article  CAS  Google Scholar 

  95. Garces, H.F., Galindo, H.M., Garces, L.J., Hunt, J., Morey, A., and Suib, S.L., Microporous Mesoporous Mater., 2010, vol. 127, no. 3, p. 190.

    Article  CAS  Google Scholar 

  96. Desulfurization of Hot Coal Gas, Atimtay, A.T. and Harrison, D.P., Eds. Springer: Berlin, Heidelberg, 1998. https://doi.org/10.1007/978-3-642-58977-5

  97. Zhao, S., Yi, H., Tang, X., Gao, F., Zhang, B., Wang, Z., and Zuo, Y., J. Cleaner Prod., 2015, vol. 87, p. 856. https://doi.org/10.1016/j.jclepro.2014.10.001

    Article  CAS  Google Scholar 

  98. Lee, K.X. and Valla, J.A., React. Chem. Eng., 2019, vol. 4, no. 8, pp. 1357–1386. https://doi.org/10.1039/C9RE00036D

    Article  CAS  Google Scholar 

  99. Huo, Q., Li, J., Liu, G., Qi, X., Zhang, X., Ning, Y., Zhang, B., Fu, Y., and Liu, S., Chem. Eng. J., 2019, vol. 62, p. 287. https://doi.org/10.1016/j.cej.2019.01.050

    Article  CAS  Google Scholar 

  100. Meshkat, S.S., Tavakoli, O., Rashidi, A., and Esrafili, M.D., Ecotoxicol. Environ. Saf., 2018, vol. 165, p. 533. https://doi.org/10.1016/j.ecoenv.2018.08.110

    Article  CAS  PubMed  Google Scholar 

  101. Tasharrofi, S., Taghdisian, H., and Golchoobi, A., J. Mol. Graphics Modell., 2018, vol. 81, p. 86. https://doi.org/10.1016/j.jmgm.2018.02.015

    Article  CAS  Google Scholar 

  102. Shah, M.S., Tsapatsis, M., and Siepmann, J.I., Chem. Rev., 2017, vol. 117, no. 14, pp. 9755–9803. https://doi.org/10.1021/acs.chemrev.7b00095

    Article  CAS  PubMed  Google Scholar 

  103. Faye, O., Eduok, U., Szpunar, J., and Samoura, A., Surf. Sci., 2018, vol. 668, p. 100. https://doi.org/10.1016/j.susc.2017.10.016

    Article  CAS  ADS  Google Scholar 

  104. Svinterikos, E., Zuburtikudis, I., and Al-Marzouqi, M., J. Nanotechnol., 2019, vol. 2019, p. e2809867. https://doi.org/10.1155/2019/2809867

    Article  CAS  Google Scholar 

  105. Liang, C., Li, Z., and Dai, S., Angew. Chem. Int. Ed., 2008, vol. 47, no. 20, p. 3696. https://doi.org/10.1002/anie.200702046

    Article  CAS  Google Scholar 

  106. Xin, W. and Song, Y., RSC, Adv., 2015, vol. 5, no. 101, p. 83239. https://doi.org/10.1039/C5RA16864C

    Article  CAS  ADS  Google Scholar 

  107. Lyu, Y., Liu, X., Liu, W., Tian, Y., and Qin, Z., Chem. Eng. J., 2020, vol. 393, p. 124680. https://doi.org/10.1016/j.cej.2020.124680

    Article  CAS  Google Scholar 

  108. Zango, Z.U., Jumbri, K., Sambudi, N.S., Abu Bakar, H.H., Garba, Z.N. Isiyaka, H.A., Saad, B., Polyhedron, 2021, vol. 210, p. 115515. https://doi.org/10.1016/j.poly.2021.115515

    Article  CAS  Google Scholar 

  109. Li, H., Wang, K., Sun, Y., Lollar, C.T., Li, J., and Zhou, H.C., Materials Today, 2018, vol. 21, no. 2, pp. 108. https://doi.org/10.1016/j.mattod.2017.07.006

    Article  CAS  Google Scholar 

  110. Gupta, N.K., Bae, J., Kim, S., and Kim, K.S., Chemosphere, 2021, vol. 274, p. 129789. https://doi.org/10.1016/j.chemosphere.2021.129789

    Article  CAS  PubMed  Google Scholar 

  111. Georgiadis, A.G., Charisiou, N., Yentekakis, I.V., and Goula, M.A., Materials, 2020, vol. 13, no. 16, p. 3640. https://doi.org/10.3390/ma13163640

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  112. Zhao, Z., Zuhra, Z., Qin, L., Zhou, Y., Zhang, L., Tang, F., and Mu, C., Fuel Process. Technol., 2018, vol. 176, p. 276. https://doi.org/10.1016/j.fuproc.2018.03.037

    Article  CAS  Google Scholar 

  113. Dasgupta, S., Gupta, P., Aarti Nanoti, A., Goswami, A.N., Garg, M.O., Tangstad, E., Vistad, Ø. B., Karlsson, A., and Stöcker, M., Fuel, 2013, vol. 108, p. 184. https://doi.org/10.1016/j.fuel.2012.12.060

    Article  CAS  Google Scholar 

  114. Khadim, A.T., Albayati, T.M., and Cata Saady, N.M., Microporous Mesoporous Mater., 2022, vol. 341, p. 112020. https://doi.org/10.1016/j.micromeso.2022.112020

    Article  CAS  Google Scholar 

  115. Gooneh-Farahani, S. and Anbia, M.A., J. Environ. Chem. Eng., 2023, vol. 11, no. 1, p. 108997. https://doi.org/10.1016/j.jece.2022.108997

    Article  CAS  Google Scholar 

  116. Hao, L., Hurlock, M.J., Ding, G., and Zhang, Q., Top Curr. Chem. (Z), 2020, vol. 378, no. 1, p. 17. https://doi.org/10.1007/s41061-020-0280-1

    Article  CAS  Google Scholar 

  117. Hasan, Z. and Jhung, S.H., Facile ACS Appl. Mater. Interfaces, 2015, vol. 7, no. 19, pp. 10429–10435. https://doi.org/10.1021/acsami.5b01642

    Article  CAS  PubMed  Google Scholar 

  118. Xin, C. and Wang, S., IOP Conf.Ser.: Earth Environ. Sci., 2018, vol. 108, no. 4, p. 042035. https://doi.org/10.1088/1755-1315/108/4/042035

  119. Kampouraki, Z.-C., Giannakoudakis, D.A., Nair, V., Hosseini-Bandegharaei, A., Colmenares, J.C., and Deliyanni, E.A., Molecules, 2019, vol. 24, no. 24, p. 4525. https://doi.org/10.3390/molecules24244525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ma, X., Liu, H., Li, W., Peng, S., and Chen, Y., RSC Adv., 2016, vol. 6, no. 99, pp. 96997–97003. https://doi.org/10.1039/C6RA18593B

    Article  CAS  ADS  Google Scholar 

  121. Zhang, H.-Y., Zhang, Z.-R., Yang, C., Ling, L.-X., Wang, B.-J., and Fan, H.-L., J. Inorg. Organomet. Polym., 2018, vol. 28, no. 3, pp. 694–701. https://doi.org/10.1007/s10904-017-0740-4

    Article  CAS  Google Scholar 

  122. Bhattacharjee, S., Choi, J.-S., Yang, S.-T., Choi, S., Kim, J., and Ahn, W., Am J. Nanosci. Nanotechnol., 2010, vol. 10, p. 135. https://doi.org/10.1166/jnn.2010.1493

    Article  CAS  PubMed  Google Scholar 

  123. Hara, N., ZIF-8 Membrane, in Encyclopedia of Membranes, Drioli, E. and Giorno, L., Eds., Springer: Berlin, Heidelberg, 2016, pp. 2064–2067. https://doi.org/10.1007/978-3-662-44324-8_1988

  124. Bagheri, M., Melillo, A., Ferrer, B., Masoomi, M.Y., and Garcia, H., ACS Appl. Mater. Interfaces, 2022, vol. 14, no. 1, pp. 978–989. https://doi.org/10.1021/acsami.1c19862

    Article  CAS  PubMed  Google Scholar 

  125. Sun, Y. and Zhou, H.C., Sci. Technol. Adv. Mater., 2015, vol. 16, no. 5, p. 054202. https://doi.org/10.1088/1468-6996/16/5/054202

    Article  PubMed  PubMed Central  Google Scholar 

  126. Nguyen, H.T., Nguyen, L.H.T., Doan, T.L.H., and Tran, P.H., RSC Adv., 2019, vol. 9, no. 16, pp. 9093–9098. https://doi.org/10.1039/C9RA01071H

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  127. Ertas, I.E., Gulcan, M., Bulut, A., Yurderi, M., and Zahmakiran, M., Microporous Mesoporous Mater., 2016, vol. 226, p. 94. https://doi.org/10.1016/j.micromeso.2015.12.048

    Article  CAS  Google Scholar 

  128. He, J., Aggarwal, K., Katyal, N., He, S., Chiang, E., Dunning, S.G., Reynolds, J.E.I., Steiner, A., Henkelman, G., Que, E.L., and Humphrey, S.M., J. Am. Chem. Soc., 2020, vol. 142, no. 14, pp. 6467–6471. https://doi.org/10.1021/jacs.9b13793

    Article  CAS  PubMed  Google Scholar 

  129. Zhang, C.-N., Li, Y., Fan, H.-L., Yang, C., and Wu, M.-M., J. Inorg. Organomet. Polym., 2020, vol. 30, no. 2, pp. 486–493. https://doi.org/10.1007/s10904-019-01207-y

    Article  CAS  Google Scholar 

  130. Zhang, C., Zhang, X., Tao, Z., Li, B., Zhao, D., Gao, H., Zhu, Z., Wang, G., and Shu, X., Chem. Eng. J., 2023, pp. 455, 140487. https://doi.org/10.1016/j.cej.2022.140487

  131. Zhang, H.-Y., Shi, R.-H., Fan, H.-L., Yang, C., Zhang, C.-N., Wang, Y.-S., and Tian, Z., Microporous Mesoporous Mater., 2020, vol. 298, p. 110070. https://doi.org/10.1016/j.micromeso.2020.110070

    Article  CAS  Google Scholar 

  132. Shi, S., Li, Y.-X., Li, S.-S., Liu, X.-Q., and Sun, L.-B., Green Energy Environ., 2020, vol. 7, no. 2, p. 345, https://doi.org/10.1016/j.gee.2020.10.009

    Article  CAS  Google Scholar 

  133. Ma, X., Liu, F., Helian, Y., Li, C., Wu, Z., Li, H., Chu, H., Wang, Y., Wang, Y., Lu, W., Guo, M., Yu, M., and Zhou, S., Energy Convers. Manag., 2021, vol. 229, p. 113760. https://doi.org/10.1016/j.enconman.2020.113760

    Article  CAS  Google Scholar 

  134. Pang, S.H., Han, C., Sholl, D.S., Jones, C.W., and Lively, R.P., Chem. Mater., 2016, vol. 28, no. 19, pp. 6960–6967. https://doi.org/10.1021/acs.chemmater.6b02643

    Article  CAS  Google Scholar 

  135. Ethiraj, J., Bonino, F., Lamberti, C., and Bordiga, S., Microporous Mesoporous Mater., 2015, vol. 207, p. 90. https://doi.org/10.1016/j.micromeso.2014.12.034

    Article  CAS  Google Scholar 

  136. Zhao, G., Fang, Y., Dai, W., and Ma, N., RSC Adv., 2017, vol. 7, no. 35, pp. 21649–21654. https://doi.org/10.1039/C7RA02946B

    Article  CAS  ADS  Google Scholar 

  137. Zhang, H.-Y., Shi, R.-H., Zhang, Z.-R., Zhou, C.-H., Yang, C., Fan, H.-L., and Wu, M.-M., Eur. J. Inorg. Chem., 2018, vol. 2018, no. 24, pp. 2768–2775. https://doi.org/10.1002/ejic.201800133

    Article  CAS  Google Scholar 

  138. Zhu, L., Jia, X., Bian, H., Huo, T., Duan, Z., Xiang, Y., and Xia, D., New J. Chem., 2018, vol. 42, no. 5, pp. 3840–3850. https://doi.org/10.1039/C7NJ04192F

    Article  CAS  Google Scholar 

  139. Fan, H.-L., Shi, R.-H., Zhang, Z.-R., Zhen, T., Shangguan, J., and Mi, J., Applied Surface Science, 2016, vol. 394, p. 394. https://doi.org/10.1016/j.apsusc.2016.10.071

    Article  CAS  ADS  Google Scholar 

  140. Zhang, Z., Wang, H., Chen, X., Chenming, Z., Wei, Z., and Sun, Y., Adsorption, 2015, vol. 21, p. 77. https://doi.org/10.1007/s10450-015-9651-2

    Article  CAS  Google Scholar 

  141. Alivand, M.S., Shafiei-Alavijeh, M., Tehrani, N.H.M.H., Ghasemy, E., Rashidi, A., and Fakhraie, S., Microporous Mesoporous Mater., 2019, vol. 279, p. 153.

    Article  CAS  Google Scholar 

  142. Sánchez-González, E., Mileo, P.G.M., Sagastuy-Breña, M., Álvarez, J.R., Reynolds, J.E., Villarreal, A., Gutiérrez-Alejandre, A., Ramirez, J., Balmaseda, J., González-Zamora, E., Maurin, G., Humphrey, S.M., and Ibarra, I.J., Mater. Chem. A, 2018, vol. 6, no. 35, pp. 16900–16909. https://doi.org/10.1039/C8TA05400B

    Article  Google Scholar 

  143. Joshi, J.N., Zhu, G., Lee, J.J., Carter, E.A., Jones, C.W., Lively, R.P., and Walton, K.S., Langmuir, 2018, vol. 34, no. 29, pp. 8443–8450. https://doi.org/10.1021/acs.langmuir.8b00889

    Article  CAS  PubMed  Google Scholar 

  144. Habeeb, O., Kanthasamy, R., Ali, G., Yunus, R., Yunis, R., and Sethupathi, S., Rev. Chem. Eng., 2017, vol. 34, no. 6, p. 837. https://doi.org/10.1515/revce-2017-0004

    Article  CAS  Google Scholar 

  145. Lehrer, S.E., Jovancicevic, V., and Ramachandran, S., US Patent 9587181B2, 2017.

  146. Lehrer, S.E., Ramachandran, S., and Jovancicevic, V., US Patent 20130320258A1, 2013.

  147. Ramachandran, S., Lehrer, S.E., and Jovancicevic, V., US Patent 20140305845A1, 2014.

  148. Smolyaninov, I.V., Okhlobystin, A.O., Poddel’skii, A.I., Berberova N.T., and Eremenko I.L., Russ. J. Coord. Chem., 2011, vol. 37, no. 1, p. 12.

    Article  CAS  Google Scholar 

  149. Smolyaninov, I.V., Okhlobystin, A.O., Poddel’skii, A.I., Berberova, N.T., and Eremenko, I.L., Dokl. Chem., 2009, vol. 427, p. 147.

    Article  CAS  Google Scholar 

  150. Berberova, N.T., Shinkar’, E.V., Smolyaninov, I.V., and Okhlobystin, A.O., Monografiya, Rostov-on-Don: YuNTs RAN, 2009, p. 256.

  151. Zhang, Z., Wang, J., Li, W., Wang, M., Qiao, W., Long, D., and Ling, L., Carbon, 2016, vol. 96, p. 608. https://doi.org/10.1016/j.carbon.2015.10.001

    Article  CAS  Google Scholar 

  152. Zhang, J., Song, H., Chen, Y., Hao, T., Li, F., Yuan, D., Wang, X., Zhao, L., and Gao, J., RSC Adv., 2018, vol. 8, no. 66, pp. 38124–38130. https://doi.org/10.1039/C8RA06859C

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  153. Gannon, J. and Thornburgh, S., WO 1988002351, 1988.

  154. US Patent 9353026B2, 2016.

  155. Tchinsa, A., Hossain, M.F., Wang, T., and Zhou, Y., Chemosphere, 2021, vol. 284, p. 131393. https://doi.org/10.1016/j.chemosphere.2021.131393

    Article  CAS  PubMed  Google Scholar 

  156. Okhlobystin, A.O., Eremenko, I.L., Storozhenko, V.N., Oleinikova, K.V., Kamyshnikova, A.S., Pashchenko, K.P., Shinkar’, E.V., Zorina-Tikhonova, E.N., Kiskin, M.A., Baranchikov, A.E., Kottsov, S.Yu., and Berberova, N.T., ACS Omega, 2021, vol. 6, no. 36, p. 23181–23190. https://doi.org/10.1021/acsomega.1c02777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Okhlobystin, A.O., Kamyshnikova, A.S., Oleinikova, K.V., Storozhenko, V.N., Pashchenko, K.P., and Berberova, N.T., Izv. Vyssh. Uchebn. Zaved., Khim. K-him. Tekhnol., 2021, vol. 64, no. 12, pp. 98–104.

    CAS  Google Scholar 

  158. Okhlobystin, A.O., Kamyshnikova, A.S., Oleinikova, K.V., Pashchenko, K.P., Storozhenko, V.N., Kiskin, M.A., Berberova, N.T., and Eremenko, I.L., Theor. Found. Chem. Eng., 2022, vol. 56, no. 1, p. 84. https://doi.org/10.31857/S0040357122010067

    Article  CAS  Google Scholar 

  159. Fomina, I.G., Chernyshev, V.V., Velikodnyi, Yu.A., Bykov, M.A., Malkerova, I.P., Alikhanyan, A.S., Zavorotnyi, Yu.S., Dobrokhotova, Zh.V., and Eremenko, I.L., Russ. Chem. Bull., 2013, no. 2, p. 427.

  160. Vijayan, S., Dash, C.S., Umadevi, G., Sundararajan, M., and Mariappan, R., J. Clust. Sci., 2021, vol. 32, no. 6, pp. 1601–1608. https://doi.org/10.1007/s10876-020-01923-3

    Article  CAS  Google Scholar 

  161. Bobrowska-Korczak, B., Gątarek, P., Skrajnowska, D., Bielecki, W., et al., Nutrients, 2020, vol. 12, no. 11, p. 3457. https://doi.org/10.3390/nu12113457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Rosha, S. and Vidil, K., Russ. Patent 2300196C2, 2007.

  163. Batova, T.I., Obukhova, T.K., Kolesnichenko, N.V., Nikolaev, S.A., Neftekhimiya, 2019, vol. 59, no. 5, p. 569. https://doi.org/10.1134/S0028242119050034

    Article  Google Scholar 

  164. Barzamini, R., Falamaki, C., and Mahmoudi, R., Fuel, 2014, vol. 130, p. 46.

    Article  CAS  Google Scholar 

  165. Berberova, N.T. Okhlobystin, A.O., Storozhenko, V.N., Oleinikova, K.V., Kamyshnikova, A.S., Eremenko, I.L., et al., Russ. Patent 2738720C1, 2020.

  166. Berberova, N.T., Okhlobystin, A.O., Storozhenko, V.N., Oleinikova, K.V., Kamyshnikova, A.S., Eremenko, I.L., et al., Russ. Patent 2762970C1, 2021.

  167. Bagheri, Z. and Moradi, M., DFT Struct Chem., 2014, vol. 25, no. 2, pp. 495–501. https://doi.org/10.1007/s11224-013-0321-2

    Article  CAS  Google Scholar 

  168. Rezaei-Sameti, M. and Nourian, M., Journal of Sulfur Chemistry, 2021, vol. 42, no. 1, p. 51. https://doi.org/10.1080/17415993.2020.1807020

    Article  CAS  Google Scholar 

  169. Rad, A.S., Aghaei, S.M., Pazoki, H., Binaeian, E., and Mirzaei, M., Surf. Interface Anal., 2018, vol. 50, no. 4, pp. 411–419. https://doi.org/10.1002/sia.6382

    Article  CAS  Google Scholar 

  170. Rodriguez, J.A., Jirsak, , T., Chaturvedi, S., and Hrbek, J., Surf. Sci., 1998, vol. 407, no. 1, pp. 171–188. https://doi.org/10.1016/S0039-6028(98)00169-1

    Article  ADS  Google Scholar 

  171. Dhage, P., Samokhvalov, A., McKee, M.L., Duin, E.C., and Tatarchuk, B.J., Surf. Interface Anal., 2013, vol. 45, no. 5, pp. 865–872. https://doi.org/10.1002/sia.5174

    Article  CAS  Google Scholar 

  172. Maldonado, F. and Stashans, A., Surf. Surf. Sci., 2016, vol. 647, p. 78. https://doi.org/10.1016/j.susc.2015.12.033

    Article  CAS  ADS  Google Scholar 

  173. Castellanos Águila, J.E., Hernández Cocoletzi, H., and Hernández Cocoletzi, G., AIP Advances, 2013, vol. 3, no. 3, p. 032118. https://doi.org/10.1063/1.4794953

  174. Borisova, D., Antonov, V., and Proykova, A., Int. J. Quantum Chem., 2013, vol. 113, no. 6, pp. 786–791. https://doi.org/10.1002/qua.24077

    Article  CAS  Google Scholar 

  175. Odoh, S.O., Cramer, C.J., Truhlar, D.G., and Gagliardi, L., Chem. Rev., 2015, vol. 115, no. 12, pp. 6051–6111. https://doi.org/10.1021/cr500551h

    Article  CAS  PubMed  Google Scholar 

  176. Rosen, A.S., Iyer, S.M., Ray, D., Yao, Z., Aspuru-Guzik, A., Gagliardi, L., Notestein, J.M., and Snurr, R.Q., Matter, 2021, vol. 4, no. 5, pp. 1578–1597. https://doi.org/10.1016/j.matt.2021.02.015

    Article  CAS  Google Scholar 

  177. Sastre, G., Theor. Chem. Acc., 2010, vol. 127, no. 4, pp. 259–270. https://doi.org/10.1007/s00214-010-0766-y

    Article  CAS  Google Scholar 

  178. Zhang, D.-C., Liu, J., Wang, C., Liu, Y., Wang, J.-H., and Han, X., Building and Environment, 2020, vol. 182, p. 107095. https://doi.org/10.1016/j.buildenv.2020.107095

    Article  Google Scholar 

  179. Rodrigues, N.M., Lisboa Dutra, J.D. Martins, J.B.L., and Freire, R.O., IRMOF-8: Int. J. Quantum Chem., 2021, vol. 121, no. 5, p. e26510. https://doi.org/10.1002/qua.26510

    Article  CAS  Google Scholar 

  180. Gueddida, S., Lebègue, S., and Badawi, M., Applied Surf. Sci., 2020, vol. 533, p. 147422. https://doi.org/10.1016/j.apsusc.2020.147422

  181. Deraet, X., Turek, J., Alonso, M., Tielens, F., Cottenier, S., Ayers, P.W., Weckhuysen, B.M., and De Proft, F., Chemistry, A European Journal, 2021, vol. 27, no. 19, pp. 6050–6063. https://doi.org/10.1002/chem.202004660

    Article  CAS  PubMed  Google Scholar 

  182. Minkin, A.M., Vest. Tekhnol. Univ., 2019, vol. 22. no. 12.

  183. Panina, N.S., Davydova, M.K., Nikandrov, E.M., Ruzanov, D.O., and Belyaev, A.N., Russ. J. Inorg. Chem., 2019, vol. 64, no. 2, pp. 225–229. https://doi.org/10.1134/S0036023619020153

    Article  CAS  Google Scholar 

  184. Solov’ev, M.E. and Irzhak, V.I., Colloid J., 2015, vol. 77, no. 3, pp. 353–358. https://doi.org/10.1134/S1061933X15030187

    Article  CAS  Google Scholar 

  185. Korchagin, D.V., Utenyshev, A.N., Bozhenko, K.V., Sanina, N.A., and Aldoshin, S.M., Russ. Chem. Bull., 2011, vol. 60, no. 6, pp. 1040–1044. https://doi.org/10.1007/s11172-011-0164-1

    Article  CAS  Google Scholar 

  186. Nikolaevskii, S.A., Kiskin, M.A., Starikova, A.A., Efimov, N.N., Sidorov, A.A., Novotortsev, V.M., and Eremenko, I.L., Russ. Chem. Bull., 2016, vol. 65, no. 12, pp. 2812–2819. https://doi.org/10.1007/s11172-016-1661-z

    Article  CAS  Google Scholar 

  187. Nikolaevskii, S.A., Evstifeev, I.S., Kiskin, M.A., Starikova, A.A., Goloveshkin, A.S., Novikov, V.V., Gogoleva, N.V., Sidorov, A.A., and Eremenko, I.L., Polyhedron, 2018, vol. 152, p. 61. https://doi.org/10.1016/j.poly.2018.06.021

    Article  CAS  Google Scholar 

  188. Nikolaevskii, S., Kiskin, M., Starikov, A., Efimov, N., Bogomyakov, A., Minin, V., Ugolkova, E., Nikitin, O., Magdesieva, T., Sidorov, A., and Eremenko, I., Russ. J. Coord. Chem., 2019, vol. 45, p. 273. https://doi.org/10.1134/S1070328419040067

    Article  CAS  Google Scholar 

  189. Kuznetsova, G.N., Nikolaevskii, S.A., Yambulatov, D.S., Shmelev, M.A., Kiskin, M.A., Starikov, A.G., Sidorov, A.A., and Eremenko, I.L., J. Struct. Chem., 2021, vol. 62, no. 2, pp. 184–195. https://doi.org/10.1134/S0022476621020025

    Article  CAS  Google Scholar 

  190. Yarzhemsky, V.G., Norov, Yu.V., Murashov, S.V., Battocchio, C., Fratoddi, I., Venditti, I., and Polzonetti, G., Inorg. Mater., 2010, vol. 46, no. 9, pp. 924–930. https://doi.org/10.1134/S0020168510090025

    Article  CAS  Google Scholar 

  191. Lousada, C.M., Johansson, A.J., and Korzhavyi, P.A., Phys. Chem. Chem. Phys., 2017, vol. 19, no. 11, pp. 8111–8120. https://doi.org/10.1039/C6CP07732C

    Article  CAS  PubMed  Google Scholar 

  192. Gabdrakipov, V.Z., Volkova, L.D., Zakarina, N.A., and Kim, O.K., Pet. Chem., 2010, vol. 50, no. 6, pp. 407–411. https://doi.org/10.1134/S0965544110060010

    Article  Google Scholar 

  193. Panina, N.S., Eremin, A.V., and Belyaev, A.N., Russ. J. Gen. Chem., 2015, vol. 85, no. 7, pp. 1655–1660. https://doi.org/10.1134/S1070363215070142

    Article  CAS  Google Scholar 

  194. Panina, N.S., Eremin, A.V., and Belyaev, A.N., Russ. J. Gen. Chem., 2017, vol. 87, no. 6, pp. 1110–1118. https://doi.org/10.1134/S1070363217060020

    Article  CAS  Google Scholar 

  195. Cambridge Crystallographic Data Centre: http:// www.ccdc.cam.ac.uk.

  196. Kaduk, J.A. and Partenheimer, W., Powder Diffraction, 1997, vol. 12, no. 1, pp. 27–39. https://doi.org/10.1017/S0885715600009404

    Article  CAS  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to thank the staff of the Laboratory for the Chemistry of Coordination Polynuclear Compounds and the Laboratory of Synthesis of Functional Materials and Mineral Processing of the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences.

Funding

The work was performed within the framework of the Initiative Research Project, Redox Transformations of Organic Compounds and Ways to Increase Their Biological Activity (state registration no. AAAA-A16-116053110041-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kamyshnikova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by Z. Svitanko

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Storozhenko, V.N., Kamyshnikova, A.S., Pashchenko, K.P. et al. Transition Metal (Zn(II), Co(II), Cu(II), Ni(II)) Complexes for the Removal of Acidic Sulfur Impurities from Hydrocarbon Fuel. Russ J Coord Chem 49 (Suppl 2), S97–S127 (2023). https://doi.org/10.1134/S1070328423600638

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328423600638

Keywords:

Navigation