Skip to main content
Log in

Modern Trends in the Synthesis of Disulfides: From Metal-Containing Catalysts to Nonmaterial Reagents (Review)

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

The modern trends in the development of synthetic approaches to the preparation of organic symmetrical and unsymmetrical disulfides are reviewed. The main trend in the synthesis of disulfides is the transition from the reactions involving metal-containing catalysts to the use of physical methods for the activation of sulfur substrates. The main attention is given to the works published since 2013 to the present time and devoted to the synthesis of disulfides in the presence of transition and nontransition metal complexes and organic and inorganic oxidants, as well as under the electric current action and photo- or microwave irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Witt, D., Synthesis, 2008, vol. 16, p. 2491. https://doi.org/10.1055/s-2008-1067188

    Article  CAS  Google Scholar 

  2. Mandal, B. and Basu, B., RSC Adv., 2014, vol. 4, p. 13854. https://doi.org/10.1039/C3RA45997G

    Article  CAS  ADS  Google Scholar 

  3. Wang, M. and Jiang, X., Top Curr. Chem., 2018, vol. 376, no. 14, p. 285. https://doi.org/10.1007/s41061-018-0192-5

    Article  CAS  Google Scholar 

  4. Ong, C.L., Khaligh, N.G., and Juan, J.C., Curr. Org. Chem., 2020, vol. 24, no. 5, p. 550. https://doi.org/10.2174/1385272824666200221111120

    Article  CAS  Google Scholar 

  5. Ong, C.L., Titinchi, S., Juan, J.C., et al., Helv. Chim. Acta, 2021, vol. 104, no. 8, p. e2100053. https://doi.org/10.1002/hlca.202100053

    Article  CAS  Google Scholar 

  6. Pereira Monteiro, C.J., Ferreira Faustino, M.A., Pinho Morgado Silva Neves, M.d.G., et al., Catalysts, 2021, vol. 11, p. 122. https://doi.org/10.3390/catal11010122

    Article  CAS  Google Scholar 

  7. Sanz, R., Aguado, R., Pedrosa, M.R., et al., Synthesis, 2002, vol. 7, p. 0856. https://doi.org/10.1055/s-2002-28520

  8. Pan, Y., Chen, W.X., Lu, S.F., and Zhang, Y.F., Dyes Pigm., 2005, vol. 66, p. 115. https://doi.org/10.1016/j.dyepig.2004.09.018

    Article  CAS  Google Scholar 

  9. Huang, H., Asha, J., and Kang, J.Y., Org. Biomol. Chem., 2018, vol. 16, p. 4236. https://doi.org/10.1039/c8ob00908b

    Article  CAS  PubMed  Google Scholar 

  10. Reid, N. and Barat, R. Chem. Eng. Commun., 2016, vol. 203, p. 714. https://doi.org/10.1080/00986445.2015.1067802

    Article  CAS  Google Scholar 

  11. Huang, X., Chen, Y., Zhen, S., et al., J. Org. Chem., 2018, vol. 83, no. 14, p. 7331. https://doi.org/10.1021/acs.joc.7b02718

    Article  CAS  PubMed  Google Scholar 

  12. Vashurin, A., Kuzmin, I., Razumov, M., et al., J. Porphyrins Phthalocyanines, 2015, vol. 19, no. 11, p. 1159. https://doi.org/10.1142/S1088424615500911

    Article  CAS  Google Scholar 

  13. Bricker, J.C. and Laricchia, L., Top Catal., 2012, vol. 55, p. 1315. https://doi.org/10.1007/s11244-012-9913-0

    Article  CAS  Google Scholar 

  14. Chauhan, D.K., Patnam, P.L., Ganguly, S.K., et al., RSC Adv., 2016, vol. 6, p. 51983. https://doi.org/10.1039/C6RA06842A

    Article  CAS  ADS  Google Scholar 

  15. Dou, Y., Huang, X., Wang, H., et al., Green Chem., 2017, vol. 19, p. 2491. https://doi.org/10.1039/C7GC00401J

    Article  CAS  Google Scholar 

  16. Golchoubian, H. and Hosseinpoor, F., Catal. Commun., 2007, vol. 8, p. 697. https://doi.org/10.1016/j.catcom.2006.08.036

    Article  CAS  Google Scholar 

  17. Nikoorazm, M., Ghorbani-Choghamarani, A., Ghorbani, F., et al., J. Porous. Mater., 2015, vol. 22, p. 261. https://doi.org/10.1007/s10934-014-9892-6

    Article  CAS  Google Scholar 

  18. Nikoorazm, M., Ghorbani-Choghamarani, A., Mahdavi, H., et al., Microporous Mesoporous Mat., 2015, vol. 211, p. 174. https://doi.org/10.1016/j.micromeso.2015.03.011

    Article  CAS  Google Scholar 

  19. Ardakani, M.H., Saeednia, S., and Sabet, M., Silicon, 2019, vol. 11, p. 1775. https://doi.org/10.1007/s12633-018-9992-z

    Article  CAS  Google Scholar 

  20. Ghorbani-Choghamarani, A., Tahmasbi, B., Arghand, F., et al., RSC Adv., 2015, vol. 5, p. 92174. https://doi.org/10.1039/C5RA14974F

    Article  CAS  ADS  Google Scholar 

  21. Toma, A.M., Raţ, C.I., Pavel, O.D., et al., Catal. Sci. Technol., 2017, vol. 7, p. 5343. https://doi.org/10.1039/c7cy00521k

    Article  CAS  Google Scholar 

  22. Gaur, R., Yadav, M., Gupta, R., et al., ChemistrySelect, 2018, vol. 3, p. 2502. https://doi.org/10.1002/slct.201703020

    Article  CAS  Google Scholar 

  23. Eshtiagh-Hosseini, H., Tabari, T., Takjoo, R., et al., Synth. React. Inorg., Met.-Org., Nano-Met. Chem., 2013, vol. 43, p. 264. https://doi.org/10.1080/15533174.2012.740719

    Article  CAS  Google Scholar 

  24. Moeini, M., Molaei, S., and Ghadermazi, M., J. Mol. Struct., 2021, vol. 1246, p. 131071, https://doi.org/10.1016/j.molstruc.2021.131071

    Article  CAS  Google Scholar 

  25. Molaei, S. and Ghadermazi, M., Appl. Organometal. Chem., 2019, vol. 34, p. e5328. https://doi.org/10.1002/aoc.5328

    Article  CAS  Google Scholar 

  26. Iali, W., Suleiman, R.K., and El Ali, B., Appl. Organomet. Chem., 2022, vol. 36, p. e6597. https://doi.org/10.1002/aoc.6597

    Article  CAS  Google Scholar 

  27. Suzuki, T., Chem. Rev., 2011, vol. 111, no. 3, p. 1825. https://doi.org/10.1021/cr100378r

    Article  CAS  PubMed  Google Scholar 

  28. Tanaka, K. and Ajiki, K., Tetrahedron Lett., 2004, vol. 45, p. 25. https://doi.org/10.1016/j.tetlet.2003.10.120

    Article  CAS  Google Scholar 

  29. Tanaka, K. and Ajiki, K., Tetrahedron Lett., 2004, vol. 45, p. 5677. https://doi.org/10.1016/j.tetlet.2004.05.092

    Article  CAS  Google Scholar 

  30. Guo, J., Zha, J., Zhang, T., et al., Org. Lett., 2021, vol. 23, no. 8, p. 3167. https://doi.org/10.1021/acs.orglett.1c00858

    Article  CAS  PubMed  Google Scholar 

  31. Corma, A., Rodenas, T., and Sabater, M.J., Chem. Sci., 2012, vol. 3, p. 398. https://doi.org/10.1039/C1SC00466B

    Article  CAS  Google Scholar 

  32. Qiu, X., Yang, X., Zhang, Y., et al., Org. Chem. Front., 2019, vol. 6, p. 2220. https://doi.org/10.1039/C9QO00239A

    Article  CAS  Google Scholar 

  33. Reddy, R.J., Waheed, M., and Kumar J.J., RSC Adv., 2018, vol. 8, p. 40446. https://doi.org/10.1039/C8RA06938G

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  34. Jiang, Y., Qin, Y., Xie, S., et al., Org. Lett., 2009, vol. 11, p. 5250. https://doi.org/10.1021/ol902186d

    Article  CAS  PubMed  Google Scholar 

  35. Islam, S. and Paul, S., RSC Adv., 2016, vol. 6, p. 95753. https://doi.org/10.1039/C6RA19832E

    Article  CAS  ADS  Google Scholar 

  36. Dhakshinamoorthy, A., Alvaro, M., and Garcia, H., Chem. Commun., 2010, vol. 46, p. 6476. https://doi.org/10.1039/C0CC02210A

    Article  CAS  Google Scholar 

  37. Saxena, A., Kumar, A., and Mozumdar, S., J. Mol. Catal. A: Chem., 2007, vol. 269, p. 35. https://doi.org/10.1016/j.molcata.2006.12.042

    Article  CAS  Google Scholar 

  38. Soleiman-Beigi, M., Yavarib, I., and Sadeghizadeh, F., RSC Adv., 2015, vol. 5, p. 87564. https://doi.org/10.1039/C5RA16879A

    Article  CAS  ADS  Google Scholar 

  39. Wang, G., Jia, J., He, Y., et el., RSC Adv., 2022, vol. 12, p. 18407. https://doi.org/10.1039/D2RA02255A

  40. Wang, F., Chen, Y., Rao, W., et al., Nature Comm., 2022, vol. 13, p. 2588. https://doi.org/10.1038/s41467-022-30256-0

    Article  CAS  ADS  Google Scholar 

  41. Chen, Y., Sheng, D., Wang, F., et al., Org. Chem. Front., 2022, vol. 9, p. 4962. https://doi.org/10.1039/D2QO00945E

    Article  CAS  Google Scholar 

  42. Deng, S.-R., Wu, T., Hu, G.-Q., et al., Synth. Comm., 2007, vol. 37, p. 71. https://doi.org/10.1080/00397910600978101

    Article  CAS  Google Scholar 

  43. Priefer, R., Lee, Y.J., Barrios, F., et al., J. Am. Chem. Soc., 2002, vol. 124, no. 20, p. 5626. https://doi.org/10.1021/ja025823y

    Article  CAS  PubMed  Google Scholar 

  44. Tetsuo, A., Takeshi, A., Naomichi, F., et al., Bull. Chem. Soc. Japan, 1976, vol. 49, p. 1441. https://doi.org/10.1246/bcsj.49.1441

    Article  Google Scholar 

  45. Steinfatt, I., Hoffmann, G.G., Brouwer, L., et al., Phosphorus Sulfur Silicon Relat. Elem., 1998, vol. 134, p. 31. https://doi.org/10.1080/10426509808545451

    Article  Google Scholar 

  46. Ali, M.H. and McDermott, M., Tetrahedron Lett., 2002, vol. 43, no. 35, p. 6271. https://doi.org/10.1016/S0040-4039(02)01220-0

    Article  CAS  Google Scholar 

  47. Kirihara, M., Asai, Y., Ogawa, S., et al., Synthesis, 2007, vol. 21, p. 3286. https://doi.org/10.1055/s-2007-990800

    Article  CAS  Google Scholar 

  48. Rattanangkool, E., Krailat, W., Vilaivan, T., et al., Eur. J. Org. Chem., 2014, vol., 22, p. 4795. https://doi.org/10.1002/ejoc.201402180

    Article  CAS  Google Scholar 

  49. Shi, Y., Chen, S.-P., Zhang, F., et al., ChemistrySelect, 2018, vol. 3, p. 997. https://doi.org/10.1002/slct.201702614

    Article  CAS  Google Scholar 

  50. Karimi, B., Hazarkhani, H., and Zareyee, D., Synthesis, 2002, vol. 17, p. 2513. https://doi.org/10.1055/s-2002-35634

    Article  Google Scholar 

  51. Leino, R. and Lönnqvist, J.-E., Tetrahedron Lett., 2004, vol. 45, p. 8489. https://doi.org/10.1016/j.tetlet.2004.09.100

    Article  CAS  Google Scholar 

  52. Hajipour, A.R., Mallakpour, S.E., and Adibi, H., J. Org. Chem., 2002, vol. 67, no. 24, p. 8666. https://doi.org/10.1021/jo026106p

    Article  CAS  PubMed  Google Scholar 

  53. Chen, F.E., Lu, Y.-W., He, Y.-P., et al., Synth. Comm., 2002, vol. 32, p. 3487. https://doi.org/10.1081/SCC-120014782

    Article  CAS  Google Scholar 

  54. Karimi, B. and Zareyee, D., Synlett., 2002, vol. 2, p. 0346. https://doi.org/10.1055/s-2002-19764

  55. Xiao, H., Chen, J., Liu, M., et al., Phosphorus Sulfur Silicon Relat. Elem., 2009, vol. 184, p. 2553. https://doi.org/10.1080/10426500802529051

    Article  CAS  Google Scholar 

  56. Harusawa, S., Yoshida, K., Kojima, C., et al., Tetrahedron, 2004, vol. 60, p. 11911. https://doi.org/10.1016/j.tet.2004.09.109

    Article  CAS  Google Scholar 

  57. Mu, Y.Q., Nodwell, M., and Pace, J.L., Bioorg. Med. Chem. Lett., 2004, vol. 14, p. 735. https://doi.org/10.1016/j.bmcl.2003.11.040

    Article  CAS  PubMed  Google Scholar 

  58. Morais, G.R. and Falconer, R.A., Tetrahedron Lett., 2007, vol. 48, p. 7637. https://doi.org/10.1016/j.tetlet.2007.08.106

    Article  CAS  Google Scholar 

  59. Yue, H., Wang, J., Xie, Z., et al., ChemistrySelect, 2020, vol. 5, p. 4273. https://doi.org/10.1002/slct.202000638

    Article  CAS  Google Scholar 

  60. Misra, A.K. and Agnihotri, G., Synth. Comm., 2004, vol. 34, p. 1079. https://doi.org/10.1081/SCC-120028640

    Article  CAS  Google Scholar 

  61. Tajbakhsh, M., Hosseinzadeh, R., and Shakoori, A., Tetrahedron Lett., 2004, vol. 45. p. 1889. https://doi.org/10.1016/j.tetlet.2004.01.006

    Article  CAS  Google Scholar 

  62. Azeredo, J.B., Thedy, M.E.C., Godoi, M., et al., Tetrahedron Lett., 2022., vol. 100, p. 153883.

  63. Zhang, Z., Lan, X., Zhang, X., et al., Asian J. Org. Chem., 2023, vol. 12, no. 3, p. e202300009. https://doi.org/10.1002/ajoc.202300009

    Article  CAS  Google Scholar 

  64. Kast, C.E. and Bernkop-Schnürch, A., Biomaterials, 2001, vol. 22, p. 2345. https://doi.org/10.1016/S0142-9612(00)00421-X

    Article  CAS  PubMed  Google Scholar 

  65. Yang, F., Wang, W., Li, K., et al., Tetrahedron, 2017, vol. 58, p. 218. https://doi.org/10.1016/j.tetlet.2016.12.007

    Article  CAS  Google Scholar 

  66. Mino, R.H. and Stellenboom, C.N., J. Org. Chem., 2006, vol. 71, no. 21, p. 8268. https://doi.org/10.1021/jo060693n

    Article  CAS  Google Scholar 

  67. Lo, Y.-H., Wang, L.-Y., and Duraisamy, T., et al., Asian J. Org. Chem., 2022, vol. 11, no. 6., p. e202200203. https://doi.org/10.1002/ajoc.202200203

    Article  CAS  Google Scholar 

  68. Dong, B., Chen, Y., Xie, S., et al., Org. Biomol. Chem., 2023, vol. 21, p. 930. https://doi.org/10.1039/D2OB02124B

    Article  CAS  PubMed  Google Scholar 

  69. Yuan, J., Liu, C., and Lei, A., Org. Chem. Front., 2015, vol. 2, no. 6, p. 677. https://doi.org/10.1039/C5QO00027K

    Article  CAS  Google Scholar 

  70. Xu, Y., Shi, X., and Wu, L., RSC Adv., 2019, vol. 9, p. 24025. https://doi.org/10.1039/C9RA04242C

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  71. Vandavasi, J.K., Hu, W.-P., Chen, C.-Y., et al., Tetrahedron, 2011, vol. 67, p. 8895. https://doi.org/10.1016/j.tet.2011.09.071

    Article  CAS  Google Scholar 

  72. Lo, W.-S., Hu, W.-P., Lo, H.-P., et al., Org. Lett., 2010, vol. 12, p. 5570. https://doi.org/10.1021/ol102455x

    Article  CAS  PubMed  Google Scholar 

  73. Brinker, U.H., Tyner, M., and Jones, W.M., Synthesis, 1975, vol. 1975, no. 10, p. 671. https://doi.org/10.1055/s-1975-23885

    Article  Google Scholar 

  74. Burmistrova, D.A., Smolyaninov, I.V., and Berberova, N.T., Russ. Chem. Bull., 2020, vol. 69, no. 5, p. 990. https://doi.org/10.1007/s11172-020-2860-1

    Article  CAS  Google Scholar 

  75. Burmistrova, D.A., Kuzmin, V.V., Smolyaninov, I.V., et al., ChemChemTech., 2019, vol. 62, no. 12, p. 57. https://doi.org/10.6060/ivkkt.20196212.6027

    Article  CAS  Google Scholar 

  76. Song, L., Li, W., Duan, W., et al., Green Chem., 2019, vol. 21, p. 1432. https://doi.org/10.1039/C9GC00091G

    Article  CAS  Google Scholar 

  77. Bao, M. and Shimizu, M., Tetrahedron, 2003, vol. 59, p. 9655. https://doi.org/10.1016/j.tet.2003.09.080

    Article  CAS  Google Scholar 

  78. Ayodele, E.T., Olajire, A.A., Amuda, O.S., et al., Bull. Chem. Soc. Ethiop., 2003, vol. 17, p. 53. https://doi.org/10.4314/bcse.v17i1.61731

    Article  CAS  Google Scholar 

  79. Zhang, J., Li, S., Zhang, D., et al., Org. Lett., 2010, vol. 12, p. 4208. https://doi.org/10.1021/ol101863s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mancebo-Aracil, J., Casagualda, C., Moreno-Villaécija, M.A., et al., Chem. Eur. J., 2019, vol. 25, no. 53, p. 12367. https://doi.org/10.1002/chem.201901914

    Article  CAS  PubMed  Google Scholar 

  81. Petrikevich, D.K., Timoshchuk, V.A., Shadyro, O.I., et al., Pharm. Chem. J., 1995, vol. 29, no. 12, p. 32. https://doi.org/10.1007/BF02334494

    Article  CAS  Google Scholar 

  82. Maslovskaya, L.A., Petrikevich, D.K., Timoshchuk, V.A., et al., Russ. J. Gen. Chem., 1996, vol. 66, no 11, p. 1847.

    Google Scholar 

  83. Smolyaninov, I., Pitikova, O., Korchagina, E., et al., Monatsh. Chem., 2018, vol. 149, p. 1813. https://doi.org/10.1007/s00706-018-2264-1

    Article  CAS  Google Scholar 

  84. Smolyaninov, I.V., Berberova, N.T., Pitikova, O.V., et al., Russ. Chem. Bull., 2018, vol. 67, no. 10, p. 1857. https://doi.org/10.1007/s11172-018-2299-9

    Article  CAS  Google Scholar 

  85. Ukhin, L.Y., Alexeenko, D.V., Belousova, L.V., et al., Russ. Chem. Bull., 2019, vol. 68, no. 12, p. 2290. https://doi.org/10.1007/s11172-019-2702-1

    Article  CAS  Google Scholar 

  86. Musiejuk, M. and Witt, D., Org. Prep. Proced. Int., 2015, vol. 47, no. 2, p. 95. https://doi.org/10.1080/00304948.2015.1005981

    Article  CAS  Google Scholar 

  87. Pires, M.M. and Chmielewski, J., Org. Lett., 2008, vol. 10, p. 837. https://doi.org/10.1021/ol702769n

    Article  CAS  PubMed  Google Scholar 

  88. Mayer, Ch.D., Allmendinger, L., and Bracher F., Tetrahedron, 2012, vol. 68, p. 1810. https://doi.org/10.1016/j.tet.2011.11.076

    Article  CAS  Google Scholar 

  89. McCullocha, M.W.B., Coombs, G.S., Banerjee, N., et al., Bioorg. Med. Chem., 2009, vol. 17, p. 2189. https://doi.org/10.1016/j.bmc.2008.10.077

    Article  CAS  Google Scholar 

  90. Liu, Ch., Pan, J., Li, Sh., et al., Angew. Chem. Int. Ed., 2011, vol. 50, p. 10327. https://doi.org/10.1002/ange.201104305

    Article  CAS  Google Scholar 

  91. Houseman, B.T., Gawalt, E.S., and Mrksich, M., Langmuir, 2003, vol. 19, p. 1522. https://doi.org/10.1021/la0262304

    Article  CAS  Google Scholar 

  92. Uragami, M., Miyake, Y., Tokutake, N., et al., Langmuir, 2000, vol. 16, p. 8010. https://doi.org/10.1021/la001065i

    Article  CAS  Google Scholar 

  93. Diaz, C., Balasubramanian, K., and Schroit, A., J. Bioconjugate Chem., 1998, vol. 9, p. 250. https://doi.org/10.1021/bc970156x

    Article  CAS  Google Scholar 

  94. El Alaoui, A., Schmidt, F., Amessou, M., et al., Angew. Chem. Int. Ed., 2007, vol. 46, p. 6469. https://doi.org/10.1002/ange.200701270

    Article  CAS  Google Scholar 

  95. Asanuma, H., Kanemoto, K., Watanabe, T., et al., Angew. Chem. Int. Ed., 2023, vol. 62, no. 18, p. e202219156. https://doi.org/10.1002/anie.202219156

    Article  CAS  Google Scholar 

  96. Tang, S. Liu, Y., and Lei, A., Chem, 2018, vol. 4, p. 27. https://doi.org/10.1016/j.chempr.2017.10.001

    Article  CAS  Google Scholar 

  97. Tang, S., Zeng, L., and Lei, A., J. Am. Chem. Soc., 2018, vol. 140, p. 13128. https://doi.org/10.1021/jacs.8b07327

    Article  CAS  PubMed  Google Scholar 

  98. Jiang, Y., Xu, K., and Zeng, C., Chem. Rev., 2018, vol. 118, no. 9, p. 4485. https://doi.org/10.1021/acs.chemrev.7b00271

    Article  CAS  PubMed  Google Scholar 

  99. Baker, L.A., J. Am. Chem. Soc., 2018, vol. 140, no. 46, p. 15549. https://doi.org/10.1021/jacs.8b09747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yuan, Y., Yu, Y., Qiao, J., et al., Chem. Comm., 2018, vol. 54, p. 11471. https://doi.org/10.1039/C8CC06451B

    Article  CAS  PubMed  Google Scholar 

  101. Wang, Y., Deng, L., Mei, H., et al., Green Chem., 2018, vol. 20, p. 3444. https://doi.org/10.1039/C8GC01337C

    Article  CAS  Google Scholar 

  102. Romero, N.A. and Nicewicz, D.A., Chem. Rev., 2016, vol. 116, no. 17, p. 10075. https://doi.org/10.1021/acs.chemrev.6b00057

    Article  CAS  PubMed  Google Scholar 

  103. Jones, A.C., Leitch, J.A., Raby-Buck, S.E., et al., Nat. Synth., 2022, vol. 1, p. 763. https://doi.org/10.1038/s44160-022-00106-4

    Article  ADS  Google Scholar 

  104. Chatterjee, T. and Ranu, B.C., J. Org. Chem., 2021, vol. 86, no. 20, p. 13895. https://doi.org/10.1021/acs.joc.1c01454

    Article  CAS  PubMed  Google Scholar 

  105. Do, Q.T., Elothmani, D., Le Guillanton, G., et al., Tetrahedron Lett., 1997, vol. 38, p. 3383. https://doi.org/10.1016/S0040-4039(97)00624-2

    Article  CAS  Google Scholar 

  106. Matsumoto, K., Fujie, S., Suga, S., et al., Chem. Comm., 2009, vol. 36, p. 5448. https://doi.org/10.1039/B910821A

    Article  Google Scholar 

  107. Matsumoto, K., Suga, S., and Yoshida, J., Org. Biomol. Chem., 2011, vol. 9, p. 2586. https://doi.org/10.1039/C0OB01070G

    Article  CAS  PubMed  Google Scholar 

  108. Lam, K. and Geiger, W.E., J. Org. Chem., 2013, vol. 78, no. 16, p. 8020. https://doi.org/10.1021/jo401263z

    Article  CAS  PubMed  Google Scholar 

  109. Huang, P., Wang, P., Tang, S., et al., Angew. Chem. Int. Ed., 2018, vol. 57, no. 27, p. 8115. https://doi.org/10.1002/ange.201803464

    Article  CAS  Google Scholar 

  110. Li, Y., Wang, H., Wang, Z., et al., Chem. Sci., 2023, vol. 14, p. 372. https://doi.org/10.1039/D2SC05507D

    Article  CAS  PubMed  Google Scholar 

  111. Sattler, L.E., Otten, C.J., and Hilt, G., Chem. Eur. J., 2020, vol. 26, p. 3129. https://doi.org/10.1002/chem.201904948

    Article  CAS  PubMed  Google Scholar 

  112. Shinkar’, E.V., Shvetsova, A.V., Sediki, D.B., et al., Russ. J. Electrochem., 2015, vol. 51, no. 11, p. 1046. https://doi.org/10.1134/S1023193515110178

    Article  CAS  Google Scholar 

  113. Berberova, N.T., Shinkar’, E.V., Smolyaninov, I.V., et al., Russ. J. Gen. Chem., 2015, vol. 85, no. 4, p. 998. https://doi.org/10.1134/S1070363215040416

    Article  CAS  Google Scholar 

  114. Berberova, N.T., Smolyaninov, I.V., Shinkar, E.V., et al., Russ. Chem. Bull., 2018, vol. 67, no. 1, p. 108. https://doi.org/10.1007/s11172-018-2044-4

    Article  CAS  Google Scholar 

  115. Shinkar’, E.V., Shvetsova, A.V., Okhlobystin, A.O., et al., Russ. J. Electrochem., 2020, vol. 56, no. 4, p. 285. https://doi.org/10.1134/S1023193520040138

    Article  Google Scholar 

  116. Park, C.-M., Johnson, B.A., Duan, J., et al., Org. Lett., 2016, vol. 18, p. 904. https://doi.org/10.1021/acs.orglett.5b03557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Xiao, X., Feng, M., and Jiang, X., Angew. Chem. Int. Ed., 2016, vol. 55, p. 14121. https://doi.org/10.1002/anie.201608011

    Article  CAS  Google Scholar 

  118. Wang, W., Org. Lett., 2018, vol. 20, p. 3829. https://doi.org/10.1021/acs.orglett.8b01418

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  119. Burmistrova, D.A., Smolyaninov, I.V., and Berberova, N.T., Russ. J. Electrochem., 2020, vol. 56, no. 4, p. 329. https://doi.org/10.1134/S1023193520040035

    Article  CAS  Google Scholar 

  120. Francke, R. and Little, R.D., Chem. Soc. Rev., 2014, vol. 43, p. 2492. https://doi.org/10.1039/C3CS60464K

    Article  CAS  PubMed  Google Scholar 

  121. Francke, R. and Little, R.D., ChemElectroChem, 2019, vol. 6, p. 4373. https://doi.org/10.1002/celc.201900432

    Article  CAS  Google Scholar 

  122. Ogibin, Yu.N., Elinson, M.N., and Nikishin, G.I., Russ. Chem. Rev., 2009, vol. 78, no. 2, p. 89. https://doi.org/10.1070/RC2009v078n02ABEH003886

    Article  CAS  ADS  Google Scholar 

  123. Steckhan, E., Top. Curr. Chem., 1987, vol. 142, p. 1325. https://doi.org/10.1007/3-540-17871-6_11

    Article  Google Scholar 

  124. Steckhan, E., Angew. Chem. Int. Ed., 1986, vol. 25, p. 683. https://doi.org/10.1002/anie.198606831

    Article  Google Scholar 

  125. Fuchigami, T., Tetsu, M., Tajima, T., et al., Synlett., 2001, vol. 8, p. 1269. https://doi.org/10.1055/s-2001-16063

    Article  Google Scholar 

  126. Shen, Y., Hattori, H., and Ding, K., Electrochim. Acta, 2006, vol. 51, p. 2819. https://doi.org/10.1016/j.electacta.2005.08.014

    Article  CAS  Google Scholar 

  127. Masui, M. Recent Advances in Electroorganic Synthesis, New York: Marcel Dekker. 1989, p. 137.

    Google Scholar 

  128. Semmelhack, M.F., Chou, C.S., and Cortes, D.A., J. Am. Chem. Soc., 1983, vol. 105, no. 13, p. 4492. https://doi.org/10.1021/ja00351a070

    Article  CAS  Google Scholar 

  129. Semmelhack, M.F. and Schmid, C.R., J. Am. Chem. Soc., 1983, vol. 105, no. 13, p. 6732. https://doi.org/10.1021/ja00360a042

    Article  CAS  Google Scholar 

  130. Chiba, K., Arakawa, T., and Tada, M., J. Chem. Soc., Perkin Trans., 1998, vol. 1, p. 2939. https://doi.org/10.1039/A802306I

    Article  Google Scholar 

  131. Utley, J.H.P. and Rozenberg, G.G., Tetrahedron, 2002, vol. 58, p. 5251. https://doi.org/10.1016/S0040-4020(02)00495-7

    Article  CAS  Google Scholar 

  132. Utley, J.H.P. and Rozenberg, G.G., J. Appl. Electrochem., 2003, vol. 33, p. 525. https://doi.org/10.1023/A:1024474620525

    Article  CAS  Google Scholar 

  133. Magdesieva, T.V. and Butin, K.P., Russ. Chem. Rev., 2002, vol. 71, p. 223. https://doi.org/10.1070/RC2002v071n03ABEH000704

    Article  CAS  ADS  Google Scholar 

  134. Budnikova, Y.G. and Budnikov, G.K., Zh. Obshch. Khim., 1995, vol. 65, no. 9, p. 1517.

    CAS  Google Scholar 

  135. Vereshchagin, A.N., Elinson, M.N., Dorofeeva, E.O., et al., Tetrahedron, 2013, vol. 69, p. 5234. https://doi.org/10.1016/j.tet.2013.04.035

    Article  CAS  Google Scholar 

  136. Elinson, M., Vereshchagin, A.N., and Tretyakova, E.O., Synthesis, 2011, vol. 18, p. 3015. https://doi.org/10.1055/s-0030-1261031

    Article  CAS  Google Scholar 

  137. Baba, D. and Fuchigami, T., Tetrahedron Lett., 2003, vol. 44, no. 28, p. 3133. https://doi.org/10.1016/S0040-4039(03)00548-3

    Article  CAS  Google Scholar 

  138. Sun, X.-J., Yang, S.-F., and Wang, Z.-T., ChemistrySelect, 2020, vol. 5, p. 4637. https://doi.org/10.1002/slct.202000872

    Article  CAS  Google Scholar 

  139. Kudryavtcev, D.A., Shinkar’, E.V., and Berberova, N.T., Geol. Geo. Glob. Energy, 2014, vol. 3, no. 54, p. 123.

    Google Scholar 

  140. Shinkar’, E.V., Okhlobystin, A.O., Berberova, N.T., et al., Russ. J. Gen. Chem., 2012, vol. 82, no. 5, p. 815. https://doi.org/10.1134/S1070363212050015

    Article  CAS  Google Scholar 

  141. Berberova, N.T., Smolyaninov, I.V., Shinkar, E.V., et al., Int. J. Electrochem. Sci., 2019, vol. 14, p. 531. https://doi.org/10.20964/2019.01.15

    Article  CAS  Google Scholar 

  142. Berberova, N.T., Shinkar’, E.V., Smolyaninov, I.V., et al., Dokl. Chem., 2015, vol. 465, no. 2, p. 295. https://doi.org/10.1134/S0012500815120058

    Article  CAS  Google Scholar 

  143. Okhlobystin, A.O., Okhlobystina, A.V., Shinkar’, E.V., et al., Dokl. Chem., 2010, vol. 435, no. 1, p. 302. https://doi.org/10.1134/S001250081011008X

    Article  CAS  Google Scholar 

  144. Okhlobystin, A.O., Smolyaninov, I.V., Okhlobystina, A.V., et al., Russ. J. Coord. Chem., 2013, vol. 39, no. 1, p. 33. https://doi.org/10.1134/S1070328413010077

    Article  CAS  Google Scholar 

  145. Lavrent’ev, V.A., Shinkar’, E.V., Smolyaninov, I.V., et al., Russ. J. Coord. Chem., 2021, vol. 47, p. 341. https://doi.org/10.1134/S1070328421050031

    Article  Google Scholar 

  146. Burmistrova, D.A., Smolyaninov, I.V., Berberova, N.T., et al., ChemistrySelect, 2020, vol. 5, no. 45, p. 14515. https://doi.org/10.1002/slct.202003961

    Article  CAS  Google Scholar 

  147. Burmistrova, D.A., Galustyan, A., Smolyaninov, I.V., et al., J. Electrochem. Soc., 2021, vol. 168, no. 5, p. 055501. https://doi.org/10.1149/1945-7111/abfe43

    Article  CAS  ADS  Google Scholar 

  148. Burmistrova, D.A., Galustyan, A., Smolyaninov, I.V., et al., J. Electrochem. Soc., 2022, vol. 169, no. 11, p. 116501. https://doi.org/10.1149/1945-7111/ac9d69

    Article  CAS  ADS  Google Scholar 

  149. Ghammamy, S. and Tajbakhsh, M., J. Sulfur Chem., 2005, vol. 26, p. 145. https://doi.org/10.1080/17415990500089086

    Article  CAS  Google Scholar 

  150. Botteselle, G.V., Godoi, M., Galetto, F.Z., et al., J. Mol. Cat. A, 2012, vol. 365, p. 186. https://doi.org/10.1016/j.molcata.2012.09.003

    Article  CAS  Google Scholar 

  151. Wang, J.-X., Gao, L., and Huang, D., Synth. Comm., 2002, vol. 32, p. 963. https://doi.org/10.1081/SCC-120003143

    Article  CAS  Google Scholar 

  152. Cabrera, D.M.L., Líbero, F.M., Alves, D., et al., Green Chem. Lett. Rev., 2012, vol. 5, p. 329. https://doi.org/10.1080/17518253.2011.631942

    Article  CAS  ADS  Google Scholar 

  153. Kutuk, H. and Turkoz, N., Phosphorus, Sulfur Relat. Elem., 2010, vol. 186, p. 1515. https://doi.org/10.1080/10426507.2010.520174

    Article  CAS  Google Scholar 

  154. Karakullukcu, N.T., Yakan, H., Ozturk, S., et al., Phosphorus, Sulfur Relat. Elem., 2013, vol. 188, p. 1576. https://doi.org/10.1080/10426507.2013.769984

    Article  CAS  Google Scholar 

  155. Lu, X., Wang, H., Gao, R., et al., RSC Adv., 2014, vol. 4, p. 28794. https://doi.org/10.1039/C4RA03592E

    Article  CAS  ADS  Google Scholar 

  156. Lenardão, E.J., Lara, R.G., Silva, M.S., et al., Tetrahedron Lett., 2007, vol. 48, p. 7668. https://doi.org/10.1016/j.tetlet.2007.08.094

    Article  CAS  Google Scholar 

  157. Bottecchia, C., Erdmann, N., Tijssen, P.M.A., et al., ChemSusChem, 2016, vol. 9, p. 1781. https://doi.org/10.1002/cssc.201600602

    Article  CAS  PubMed  Google Scholar 

  158. Xu, H., Shi, J.-L., Lyu, S., et al., Chin. J. Catal., 2020, vol. 41, p. 1468. https://doi.org/10.1016/S1872-2067(20)63640-3

    Article  CAS  Google Scholar 

  159. Talla, A., Driessen, B., and Straathof, N.J.W., Adv. Synth. Catal., 2015, vol. 357, p. 2180. https://doi.org/10.1002/adsc.201401010

    Article  CAS  Google Scholar 

  160. Oka, M., Katsube, D., Tsuji, T., et al., Org. Lett., 2020, vol. 22, no. 23, p. 9244.https://doi.org/10.1021/acs.orglett.0c03458

    Article  CAS  PubMed  Google Scholar 

  161. Xu, H., Zhang, Y.-F., and Lang, X., Chin. Chem. Lett., 2020, vol. 31, p. 1520. https://doi.org/10.1016/j.cclet.2019.10.024

    Article  CAS  Google Scholar 

  162. Spiliopoulou, N. and Kokotos, C.G., Green Chem., 2021, vol. 23, p. 546. https://doi.org/10.1039/D0GC03818K

    Article  CAS  Google Scholar 

  163. Ren, M.-Z., Fu, Y.-J., Zhang, B.-S., et al., Synthesis, 2023, vol. 55, no. 13, p. 2011. https://doi.org/10.1055/s-0042-1751433

    Article  CAS  Google Scholar 

  164. Dethe, D.H., Srivastava, A., Dherange., B.D., et al., Adv. Synth. Catal., vol. 360, no. 16, p. 3020. https://doi.org/10.1002/adsc.201800405

Download references

Funding

The first section of the review (Metal-Containing Catalysts in the Synthesis of Disulfides) was written with the support of the Council on Grants of the President of the Russian Federation for the state support of young scientist-candidates of science (grant no. MK-2488.2022.1.3) and writing of other sections was supported by the Russian Science Foundation (project no. 23-13-00201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Burmistrova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Yablonskaya

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burmistrova, D.A., Smolyaninov, I.V. & Berberova, N.T. Modern Trends in the Synthesis of Disulfides: From Metal-Containing Catalysts to Nonmaterial Reagents (Review). Russ J Coord Chem 49 (Suppl 2), S159–S195 (2023). https://doi.org/10.1134/S1070328423600985

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328423600985

Keywords:

Navigation