Skip to main content
Log in

Metal Complexes with Redox-Active Ligands in the Indirect Electrosynthesis of Organic Sulfur Compounds

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

A possibility of using metal complexes with redox-active ligands in organic electrosynthesis is demonstrated on the basis of literature data analysis. Unlike homogeneous catalysis, many examples are known for the application of complexes of this type in electrocatalytic processes characterized by a higher selectivity and milder conditions. Interest in metal complexes with redox-active ligands is due to their use in the heterogeneous electrocatalysis as well. The main attention is given to advantages of the indirect electrosynthesis of organic compounds, in particular, sulfur derivatives, in the presence of mediators or electrocatalysts based on metal complexes with redox-active ligands. Active forms of metal complexes are generated at the electrodes and can initiate the further transformations of inert substrates. A significant decrease in power expenses compared to the direct redox activation of reagents is the main advantage of indirect electrosynthesis. The cyclic processes favoring a permanent regeneration of metal complexes lead to an increase in the yield of target compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Rubab, L., Anum, A., Al-Hussain, S.A., et al., Catalysts, 2022, vol. 12, no. 11, p. 1329. https://doi.org/10.3390/catal12111329

    Article  CAS  Google Scholar 

  2. Wiebe, A., Gieshoff, T., Mchle, S., et al., Angew. Chem., Int. Ed. Engl., 2018, vol. 57, no. 20, p. 5594. https://doi.org/10.1002/anie.201711060

    Article  CAS  PubMed  Google Scholar 

  3. Das, B., Mishra, S.N., and Bisoyi, B., Int. J. Mechanical Eng. Technol. (IJMET), 2018, vol. 9, no. 3, pp. 1087–1094.

    Google Scholar 

  4. Bhardwaj, M. and Neelam, K., J. Basic Appl. Engineer. Res., 2015, vol. 2, no. 22, p. 1957.

    Google Scholar 

  5. Ghanshyam, D.S., Intern. J. Res., 2015, vol. 3, no. 9, p. 1. https://doi.org/10.29121/granthaalayah.v3.i9SE.2015.3121

    Article  Google Scholar 

  6. Chhipa, N.M.R., Jatakiya, V.P., Gediya, P., et al., Intern. J. Adv. Pharm. Res., 2013, vol. 4, no. 7, p. 2000.

    Google Scholar 

  7. Moiseev, I., Russ. Chem. Rev., 2013, vol. 82, no. 7, p. 616. https://doi.org/10.1070/RC2013v082n07ABEH004393

    Article  CAS  ADS  Google Scholar 

  8. Yoshida, J., Kataoka, K., Horcajada, R., et al., Chem. Rev., 2008, vol. 108, no. 7, p. 2265. https://doi.org/10.1021/cr0680843

    Article  CAS  PubMed  Google Scholar 

  9. Leech, M.C., Garcia, A.D., Petti, A., et al., React. Chem. Eng., 2020, vol. 5, no. 6, p. 977. https://doi.org/10.1039/D0RE00064G

    Article  CAS  Google Scholar 

  10. Cardoso, D.S.P., Sljukic, B., Santos, D.M.F., et al., Org. Process Res. Dev., 2017, vol. 21, no. 9, p. 1213. https://doi.org/10.1021/acs.oprd.7b00004

    Article  CAS  Google Scholar 

  11. Xiang, H., He, J., Qian, W., et al., Molecules, 2023, vol. 28, p. 857. https://doi.org/10.3390/Molecules28020857

  12. Tariq, A., Haiyan, W., Waseem, I., et al., Adv. Sci., 2023, vol. 10, p. 2205077. https://doi.org/10.1002/advs.202205077

    Article  CAS  Google Scholar 

  13. Fron-tana-Uribe,, B.A., Little, R.D., Ibanez, J.G., et al., Green Chem., 2010, vol. 12, no. 12, p. 2099. https://doi.org/10.1039/C0GC00382D

    Article  CAS  Google Scholar 

  14. Hans, J., C. R. Chimie, 2011, vol. 14, p. 745. https://doi.org/10.1016/j.crci.2011.01.002

    Article  CAS  Google Scholar 

  15. Francke, R., Little, R.D., and Inagi, S., ChemElectroChem, 2019, vol. 6, p. 4065. https://doi.org/10.1002/celc.201901175

    Article  CAS  Google Scholar 

  16. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, Wiley, 2000, 2nd ed.

    Google Scholar 

  17. Seeber, R., Zanardi, C., and Inzelt, G., ChemTexts, 2015, p. 18. https://doi.org/10.1007/s40828-015-0018-9

  18. Wiebe, A., Gieshoff, T., Mchle, S., et al., Angew. Chem., Int. Ed. Engl., 2018, vol. 57, p. 5594. https://doi.org/10.1002/anie.201711060

    Article  CAS  PubMed  Google Scholar 

  19. Dey, A., Gunnoe, B., and Stamenkovic, V.R., ACS Catal., 2020, vol. 10, no. 21, p. 13156. https://doi.org/10.1021/acscatal.0c04559

    Article  CAS  Google Scholar 

  20. Shao, W., Lu, B., and Cao, J., ACES, 2023, vol. 18, no. 2, p. 2023. e202201093 https://doi.org/10.1002/asia.202201093

  21. Novaes, L.F.T., Liu, J., Shen, Y., and Lu, L., Chem. Soc. Rev., 2021, vol. 50, no. 14, p. 7941. https://doi.org/10.1039/d1cs00223f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Budnikova, Y.H., Dolengovski, E.L., Tarasov, M.V., et al., J. Solid State Electrochem., 2023. https://doi.org/10.1007/s10008-023-05507-9

  23. Ogibin, YuN., Elinson, M.N., and Nikishin, G.I., Russ. Chem. Rev., 2009, vol. 78, p. 89. https://doi.org/10.1070/RC2009v078n02ABEH003886

    Article  CAS  ADS  Google Scholar 

  24. Cheung, K.C., Wong, W.-L., Ma, D.-L., et al., Coord. Chem. Rev., 2007, vol. 251, nos. 17–20, p. 2367. https://doi.org/10.1016/j.ccr.2007.04.004

    Article  CAS  Google Scholar 

  25. Shul’pin, G.B., Kozlov, Y.N., and Shul’pina, L.S., Catalysts, 2019, vol. 9, p. 1046. https://doi.org/10.3390/catal9121046

    Article  CAS  Google Scholar 

  26. Pollok, D. and Waldvogel, S.R., Electro-organic Synthesis: A 21st Century Technique, Chem. Sci., 2020, vol. 11, p. 12386. https://doi.org/10.1039/D0SC01848A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sauermann, N., Meyer, T.H., Qiu, Y., et al., ACS Catal., 2018, vol. 8, no. 8, p. 7086. https://doi.org/10.1021/acscatal.8b01682

    Article  CAS  Google Scholar 

  28. Zhu, D., Thapa, I., and Korobkov, I., Inorg. Chem., 2011, vol. 50, no. 20, p. 9879. https://doi.org/10.1021/ic2002145

    Article  CAS  PubMed  Google Scholar 

  29. Lichtenberg, C., Chem., 2020, vol. 26, no. 44, p. 9674. https://doi.org/10.1002/chem.202000194

    Article  CAS  Google Scholar 

  30. Lavacchi, A., Miller, H., and Vizza, F., Nanotechnology in Electrocatalysis for Energy, Part of the Nanostructure Science and Technology book series (NST, vol. 170), 2014, p. 273.

    Google Scholar 

  31. Ding, B., Solomon, M.B., and Leong, C.F., Coord. Chem. Rev., 2021, vol. 439, p. 213891. https://doi.org/10.1016/j.ccr.2021.213891

    Article  CAS  Google Scholar 

  32. Bernauer, J., Pölker, J., and von Wangelin, A.J., ChemCatChem, 2022, vol. 14, no. 1, p. e202101182. https://doi.org/10.1002/cctc.202101182

    Article  CAS  PubMed  Google Scholar 

  33. Nasibipour, M., Safaei, E., Masoumpour, M.S., and Wojtczak, A., RSC Adv., 2020, vol. 10, no. 41, p. 24176. https://doi.org/10.1039/D0RA04362A

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  34. Costentina, C., Savéanta, J.-M., and Tard, C., PNAS, 2018, vol. 115, no. 37, p. 9104. https://doi.org/10.1073/pnas.1810255115

    Article  CAS  ADS  Google Scholar 

  35. Luca, O. and Crabtree, R., Chem. Soc. Rev., 2012, vol. 42, no. 4, p. 1440. https://doi.org/10.1039/c2cs35228a

    Article  CAS  PubMed  Google Scholar 

  36. Das, A., Ren, Y., Hessin, C., et al., Beilstein J. Org. Chem., 2020, vol. 16, p. 858. https://doi.org/10.3762/bjoc.16.77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kaeffer, N. and Leitner, W., J. Am. Chem. Soc., 2022, vol. 2, p. 1266. https://doi.org/10.1021/jacsau.2c00031

    Article  CAS  Google Scholar 

  38. Arora, A., Oswal, P., Datta, A., et al., Coord. Chem. Rev., 2022, vol. 459, p. 214406. https://doi.org/10.1016/j.ccr.2022.214406

    Article  CAS  Google Scholar 

  39. Peng, Y., Sanati, S., Morsali, A., et al., Angew. Int. Ed., 2023, vol. 62, no. 9. e202214707 https://doi.org/10.1002/anie.202214707

    Article  CAS  Google Scholar 

  40. Liu, L., Xu, Q., and Zhu, Q.-L., Energy Sustain. Adv. Res., 2021, vol. 2, no. 11, p. 2100100. https://doi.org/10.1002/aesr.202100100

    Article  CAS  ADS  Google Scholar 

  41. Berberova, N.T., Shinkar, E.V., Smolyaninov, I.V., et al., Hydrogen Sulfide and Alkanethiols in the Synthesis of Biologically Active Organic Sulfur Compounds, Monograph, Rostov-on-Don: SSC RAS Publishing, 2016.

  42. Berberova, N.T., Shinkar, E.V., Smolyaninov, I.V., et al., Synthesis and Biological Activity of Organic Mono‑, Di- and Polysulfides. Monograph, Rostov-on-Don: SSC RAS Publishing, 2019.

  43. Feng, M., Tang, B., Liang, S.H., et al., Curr. Top. Med. Chem., 2016, vol. 16, no. 11, p. 1200. https://doi.org/10.2174/1568026615666150915111741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Estevam, E.C., Faulstich, L., Griffin, S., et al., Curr. Org. Chem., 2016, vol. 20, no. 2, p. 211. https://doi.org/10.2174/1385272819666150724233028

    Article  CAS  Google Scholar 

  45. Kang, J., Xu, S., Radford, M.N., et al., Angew. Chem. Int. Ed., 2018, vol. 57, no. 20, p. 5893. https://doi.org/10.1002/anie.201802845

    Article  CAS  Google Scholar 

  46. Alimoradi, H., Matikonda, S.S., Gamble, A.B., et al., Nanostructures for Drug Delivery. Micro and Nano Technologies, 2017, p. 327. https://doi.org/10.1016/B978-0-323-46143-6.00010-5

  47. Purohit, M.K., Scovell, I., Neschadim, A., et al., Bioorg. Med. Chem. Lett., 2013, vol. 23, no. 8, p. 2324. https://doi.org/10.1016/j.bmcl.2013.02.064

    Article  CAS  PubMed  Google Scholar 

  48. Saidu, N.E., Valente, S., Bana, E., et al., Bioorg. Med. Chem., 2012, vol. 20, no. 4, p. 1584. https://doi.org/10.1016/j.bmc.2011.12.032

    Article  CAS  PubMed  Google Scholar 

  49. Cerella, C., Dicato, M., Jacob, C., et al., Anticancer Agents Med. Chem., 2011, vol. 11, no. 3, p. 267. https://doi.org/10.2174/187152011795347522

    Article  CAS  PubMed  Google Scholar 

  50. St-Gelais, A., Legault, J., Mshvildadze, V., et al., J. Nat. Prod., 2015, vol. 78, no. 8, p. 1904. https://doi.org/10.1021/acs.jnatprod.5b00227

    Article  CAS  PubMed  Google Scholar 

  51. Guo, S., He, W., Xiang, J., et al., Tetrahedron Lett., 2015, vol. 56, no. 17, p. 2159. https://doi.org/10.1016/j.tetlet.2015.01.068

    Article  CAS  Google Scholar 

  52. Yang, Y. Dong, W., Guo, Y., et al., Green Chem., 2013, vol. 15, p. 3170. https://doi.org/10.1039/C3GC41330F

    Article  CAS  Google Scholar 

  53. Bastug, G. and Nolan, S.P., J. Org. Chem., 2013, vol. 78, no. 18, p. 9303. https://doi.org/10.1021/jo401492n

    Article  CAS  PubMed  Google Scholar 

  54. Chen, J., Chen, S., Xu, X., et al., J. Org. Chem., 2016, vol. 81, no. 8, p. 3246. https://doi.org/10.1021/acs.joc.6b00203

    Article  CAS  PubMed  ADS  Google Scholar 

  55. Arisawa, M. and Yamaguchi, M., Pure Appl. Chem., 2008, vol. 80, no. 5, p. 993. https://doi.org/10.1351/pac200880050993

    Article  CAS  Google Scholar 

  56. Kanemoto, K., Sugimura, Y., Shimizu, S., et al., Chem. Commun., 2017, vol. 53, p. 10640. https://doi.org/10.1039/C7CC05868C

    Article  CAS  Google Scholar 

  57. Eichman, C.C. and Stambuli, J.P., Molecules, 2011, vol. 16, no. 1, p. 590. https://doi.org/10.3390/Molecules16010590

  58. Berberova, N.T. and Shinkar, E.V., Russ. Chem. Bull., 2000, vol. 49, no. 7, p. 1178. https://doi.org/10.1007/BF02495758

    Article  CAS  Google Scholar 

  59. Berberova, N.T., Shinkar, E.V., Smolyaninov, I.V., et al., Russ. J. Gen. Chem., 2015, vol. 85, no. 4, p. 998. https://doi.org/10.1134/S1070363215040416

    Article  CAS  Google Scholar 

  60. Shinkar, E.V., Shvetsova, A.V., Sediki, D.B., et al., Russ. J. Electrochem., 2015, vol. 51, no. 11, p. 1046. https://doi.org/10.1134/S1023193515110178

    Article  CAS  Google Scholar 

  61. Berberova, N.T., Shinkar, E.V., Smolyaninov, I.V., et al., Dokl. Chem., 2015, vol. 465, no. 2, p. 295. https://doi.org/10.1134/S0012500815120058

    Article  CAS  Google Scholar 

  62. Shinkar’, E.V., Kudryavtsev, D.A., Pashchenko, K.P., et al., Mendeleev Commun., 2017, vol. 27, no. 2, p. 180. https://doi.org/10.1016/j.mencom.2017.03.025

    Article  CAS  Google Scholar 

  63. Cembellin, S. and Batanero, B., Chem. Rec., 2021, vol. 21, no. 9, p. 2453. https://doi.org/10.1002/tcr.202100128

    Article  CAS  PubMed  Google Scholar 

  64. Smolyaninov, I.V., Okhlobystin, A.O., Poddel’sky, A.I., et al., Russ. J. Coord. Chem., 2011, vol. 36, no. 1, p. 14. https://doi.org/10.1134/S107032841012105X

    Article  CAS  Google Scholar 

  65. Yan, S.M., Kawamata, Y., and Baran, P.S., Chem. Rev., 2017, vol. 117, no. 21, p. 13230. https://doi.org/10.1021/acs.chemrev.7b00397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jutan, A., Chem. Rev., 2008, vol. 108, no. 7, p. 2300. https://doi.org/10.1021/cr068072h

    Article  CAS  Google Scholar 

  67. Ma, C., Fang, P., Liu, Z.-R., et al., Science Bull., 2021, vol. 66, no. 23, p. 2412. https://doi.org/10.1016/j.scib.2021.07.011

    Article  CAS  ADS  Google Scholar 

  68. McKenzie, E.C.R., Hosseini, S., Petro, A.G.C., et al., Chem. Rev., 2022, vol. 122, no. 3, p. 3292. https://doi.org/10.1021/acs.chemrev.1c00471

    Article  CAS  PubMed  Google Scholar 

  69. Chen, N. and Xu, H.C., Chem. Rec., 2021, vol. 21, no. 9, p. 2306. https://doi.org/10.1002/tcr.202100048

    Article  CAS  PubMed  ADS  Google Scholar 

  70. Lodh, J., Paul, S., Sun, H., et al., Front. Chem., 2023, vol. 10. https://doi.org/10.3389/fchem.2022.956502

  71. Zhu, C., Ang, N.W.J., Meyer, T.H., et al., ACS Cent. Sci., 2021, vol. 7, no. 3, p. 415. https://doi.org/10.1021/acscentsci.0c01532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Francke, R., Prudlik, A., Little, R.D., et al., Science of Synthesis: Electrochemistry in Organic Synthesis, Ackermann, L., Ed., Stuttgart: Thieme, 2021; Chapter 10 Redox-Mediators in Organic Syntheses, 2022, vol. 1, p. 293. https://doi.org/10.1055/sos-SD-236-00197

  73. Francke, R. and Little, R.D., ChemElectroChem, 2019, vol. 6, no. 17, p. 4373. https://doi.org/10.1002/celc.201900432

    Article  CAS  Google Scholar 

  74. Francke, R. and Little, R.D., Curr. Opin. Electrochem., 2023, vol. 40, p. 101315. https://doi.org/10.1016/j.coelec.2023.101315

    Article  CAS  Google Scholar 

  75. Hilt, G., ChemElectroChem, 2020, vol. 7, no. 2, p. 395. https://doi.org/10.1002/celc.201901799

    Article  CAS  Google Scholar 

  76. Tanaka, H., Kuroboshi, M., and Mitsudo, K., ElectroChem., 2009, vol. 77, no. 12, p. 1002. https://doi.org/10.5796/electrochemistry.77.1002

    Article  CAS  Google Scholar 

  77. Gao, W.-J., Li, W.-C., and Zeng, C.-C., J. Org. Chem., 2014, vol. 79, no. 20, p. 9613. https://doi.org/10.1021/jo501736w

    Article  CAS  PubMed  Google Scholar 

  78. Lian, F., Xu, K., and Zeng, C., Chem. Rec., 2021, vol. 21, no. 9, p. 2290. https://doi.org/10.1002/tcr.202100036

    Article  CAS  PubMed  Google Scholar 

  79. Сhen, С., Wang, X., and Yang, T., Front. Chem., 2022, vol. 10, p. 1. https://doi.org/10.3389/fchem.2022.883474

    Article  CAS  ADS  Google Scholar 

  80. Cai, C.-Y., Shu, X.-M., and Xu, H.-C., Nat. Com., 2019, vol. 10, p. 4953. https://doi.org/10.1038/s41467-019-13024-5

    Article  CAS  ADS  Google Scholar 

  81. Mancheño, O.G. and Waser, M., Eur. J. Org. Chem., 2023, vol. 26, no. 1, p. e202200950 https://doi.org/10.1002/ejoc.202200950

    Article  CAS  Google Scholar 

  82. Maity, A., Frey, B.L., Hoskinson, N.D., et al., J. Am. Chem. Soc., 2020, vol. 142, no. 11, p. 4990. https://doi.org/10.1021/jacs.9b13918

    Article  CAS  PubMed  Google Scholar 

  83. Chakraborty, P., Mandal, R., Garg, N., et al., Coord. Chem. Rev., 2021, vol. 444, p. 214065. https://doi.org/10.1016/j.ccr.2021.214065

    Article  CAS  Google Scholar 

  84. Wirth, T., Curr. Opin. Electrochem., 2021, vol. 28, p. 100701. https://doi.org/10.1016/j.coelec.2021.100701

    Article  CAS  Google Scholar 

  85. Moinet, C., Hurvois, J.-P., and Jutand, A., Adv. Org. Synth., 2005, vol. 1, no. 1, p. 403. https://doi.org/10.2174/1574087054582978

    Article  CAS  Google Scholar 

  86. Ali, T., Wang, H., Iqbal, W., et al., Adv. Sci., 2023, vol. 10, p. 2205077. https://doi.org/10.1002/advs.202205077

    Article  CAS  Google Scholar 

  87. Budnikova, Y.H., Russ. Chem. Rev., 2007, vol. 71, no. 2, p. 111. https://doi.org/10.1070/RC2002v071n02ABEH000697

    Article  CAS  ADS  Google Scholar 

  88. Malapit, C.A., Prater, M.B., Cabrera-Pardo, J.R., et al., Chem. Rev., 2022, vol. 122, no. 3, p. 3180. https://doi.org/10.1021/acs.chemrev.1c00614

    Article  CAS  PubMed  Google Scholar 

  89. Dzhemilev, U.M. and Kunakova, R.V., J. Organomet. Chem., 1993, vol. 455, no. 10, p. 1. https://doi.org/10.1016/0022-328X(93)80375-L

    Article  CAS  Google Scholar 

  90. Werle, C. and Meyer, K., Organometallics, 2019, vol. 38, p. 1181. https://doi.org/10.1021/acs.organomet.9b00111

    Article  CAS  Google Scholar 

  91. Stergiou, A.D. and Symes, M.D., Catalysis Today, 2022, vols. 384–386, p. 146. https://doi.org/10.1016/j.cattod.2021.05.003

    Article  CAS  Google Scholar 

  92. Francke, R., Curr. Opin. Electrochem., 2019, vol. 15, p. 83. https://doi.org/10.1016/j.coelec.2019.03.012

    Article  CAS  Google Scholar 

  93. Yang, Z., Shi, W., Alhumade, H., Yi, H., et al., Nature Synth., 2023, vol. 2, p. 217. https://doi.org/10.1038/s44160-022-00221-2

    Article  ADS  Google Scholar 

  94. Miessler, G.L., Fischer, P.J., and Tarr, D.A., Inorganic Chemistry, Pearson New Int. Ed., 2013, 5th ed.

  95. Van Leest, N.P., de Zwart, F.J., Zhou, M., et al., J. Am. Chem. Soc., 2021, vol. 1, no. 8, p. 1101. https://doi.org/10.1021/jacsau.1c00224

    Article  CAS  Google Scholar 

  96. Singh, K., Kundu, A., and Adhikar, D., ACS. Catal., 2022, vol. 12, no. 20, p. 13075. https://doi.org/10.1021/acscatal.2c02655

    Article  CAS  Google Scholar 

  97. Anferov, S.W., Czaikowski, M.E., Anderson, J.S., et al., Trends Chem., 2021, vol. 3, no. 12, p. 993. https://doi.org/10.1016/j.trechm.2021.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Werr, M., Kaifer, E., Enders, M., et al., Angew. Chem. Int. Ed., 2021, vol. 60, p. 23451. https://doi.org/10.1002/anie.202109367

    Article  CAS  Google Scholar 

  99. Nakada, A. and Matsumoto, T., Coord. Chem. Rev., 2022, vol. 473, p. 214804. https://doi.org/10.1016/j.ccr.2022.214804

    Article  CAS  Google Scholar 

  100. Praneeth, V.K.K., Ringenberg, M.R., and Ward, T.R., Angew. Chem. Int. Ed., 2012, vol. 51, no. 41, p. 10228. https://doi.org/10.1002/anie.201204100

    Article  CAS  Google Scholar 

  101. Kaim, W., Eur. J. Inorg. Chem., 2012, vol. 2012, no. 3, p. 343. https://doi.org/10.1002/ejic.201101359

    Article  CAS  Google Scholar 

  102. Takeyama, T., Tsushima, S., and Takao, K., Inorg. Chem. Front., 2023, vol. 10, p. 4028. https://doi.org/10.1039/D3QI00189J

    Article  CAS  Google Scholar 

  103. Chirik, P.J. and Wieghardt, K.W., Science, 2010, vol. 327, no. 5967, p. 794. https://doi.org/10.1126/Science.1183281

  104. Lyaskovskyy, V. and de Bruin, B., ACS Catal., 2012, vol. 2, no. 2, p. 270. https://doi.org/10.1021/cs200660v

    Article  CAS  Google Scholar 

  105. Ma, L., Gao, X., Liu, X., et al., Chin. Chem. Lett., 2023, vol. 34, no. 4, p. 107735. https://doi.org/10.1016/j.cclet.2022.08.015

    Article  CAS  Google Scholar 

  106. Shen, Y., Mu, Y., Wang, D., et al., ACS Appl. Mater. Interfaces, 2023, vol. 15, no. 24, p. 28851. https://doi.org/10.1021/acsami.3c01726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sheridan, M.V., Sherman, B.D., Fang, Z., et al., ACS Catal., 2015, vol. 5, p. 4404. https://doi.org/10.1021/acscatal.5b00720

    Article  CAS  Google Scholar 

  108. Lin, J., Wang, N., Chen, X., et al., Sustainable Energy Fuels, 2022, vol. 6, p. 1312. https://doi.org/10.1039/D1SE01955D

    Article  CAS  Google Scholar 

  109. Bera, M., Keshari, K., Bhardwaj, A., et al., Inorg. Chem., 2022, vol. 61, no. 7, p. 3152. https://doi.org/10.1021/acs.inorgchem.1c03537

    Article  CAS  PubMed  Google Scholar 

  110. Ibrahim, M.M., Mersal, G.A.M., Fallatah, A.M., et al., RSC Adv., 2022, vol. 12, p. 8030. https://doi.org/10.1039/D1RA08530A

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  111. Jurss, J.W., Khnayzer, R.S., Panetier, J.A., et al., Chem. Sci., 2015, vol. 6, p. 4954. https://doi.org/10.1039/C5SC01414J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhang, W., Heterogenization of complexes with redox active ligands for hydrogen evolution reaction, PhD Dissertation in Chemistry, Louisville: University of Louisville, 2017. https://doi.org/10.18297/etd/2871

  113. Darmon, J.M., Raugei, S., Liu, T., et al., ACS Catal., 2014, vol. 4, no. 4, p. 1246. https://doi.org/10.1021/cs500290w

    Article  CAS  Google Scholar 

  114. Wang, C.-L., Yang, H., Du, J., et al., Appl. Organomet. Chem., 2022, vol. 36, p. e6453. https://doi.org/10.1002/aoc.6453

  115. Liu, J., Liao, R.-Z., Heinemann, F.W., et al., Inorg. Chem., 2021, vol. 60, no. 23, p. 17976. https://doi.org/10.1021/acs.inorgchem.1c02539

    Article  CAS  PubMed  Google Scholar 

  116. Sherbow, T.J., Fettinger, J.C., and Berben, L.A., Inorg. Chem., 2017, vol. 56, p. 8651. https://doi.org/10.1021/acs.inorgchem.7b00230

    Article  CAS  PubMed  Google Scholar 

  117. Yang, H.-Y., Wang, Y.-X., He, C.-S., et al., Applied Energy, 2020, vol. 274, p. 115292. https://doi.org/10.1016/j.apenergy.2020.115292

    Article  CAS  Google Scholar 

  118. Yang, Z.-W., Chen, J.-M., Qiu, L.-Q., et al., Angew. Chem., Int. Ed. Engl., 2022, vol. 61, no. 44, p. e202205301. https://doi.org/10.1002/ange.202205301

    Article  CAS  PubMed  Google Scholar 

  119. Lu, X.F., Xia, B.Y., Zang, S.-Q., et al., Angew. Chem., Int. Ed. Engl., 2020, vol. 59, no. 12, p. 4634. https://doi.org/10.1002/anie.201910309

    Article  CAS  PubMed  Google Scholar 

  120. Usman, M. and Zhu, Q.-L., in Methods for Electrocatalysis: Advanced Materials and Allied Applications, Cham: Springer, 2020, p. 29. https://doi.org/10.1007/978-3-030-27161-9_2

  121. Afewerki, S. and Córdova, A., in Asymmetric Organocatalysis Combined with Metal Catalysis, Cham: Springer, 2020, p. 1. https://doi.org/10.1007/978-3-030-43851-7_1

  122. Ma, X.-L., Li, M., Lu, J.-B., et al., Chin. J. Struct. Chem., 2022, vol. 41, no. 12, p. 2212080. https://doi.org/10.14102/j.cnki.0254-5861.2022-0197

    Article  CAS  Google Scholar 

  123. Chandy, S.K. and Bowers, S.A., Yin, M., et al., Chem., 2022, vol. 61, no. 44, p. 17505. https://doi.org/10.1021/acs.inorgchem.2c02400

    Article  CAS  Google Scholar 

  124. Huang, L., Yan, C., Cui, D., et al., Macromol. Biosci., 2015, vol. 15, p. 788. https://doi.org/10.1002/mabi.201400403

    Article  CAS  PubMed  Google Scholar 

  125. Bergner, B.J., Hofmann, C., Schürmann, A., et al., Phys. Chem. Chem. Phys., 2015, vol. 17, p. 31769. https://doi.org/10.1039/C5CP04505C

    Article  CAS  PubMed  Google Scholar 

  126. Boschloo, G. and Hagfeldt, A., Acc. Chem. Res., 2009, vol. 42, p. 1819. https://doi.org/10.1021/ar900138m

    Article  CAS  PubMed  Google Scholar 

  127. Faisal, F., Stumm, C., Bertram, M., et al., Nat. Mater., 2018, vol. 17, p. 592. https://doi.org/10.1038/s41563-018-0088-3

    Article  CAS  PubMed  ADS  Google Scholar 

  128. Lee, K.J., Lodaya, K.M., Gruninger, C.T., et al., Chem. Sci., 2020, vol. 11, p. 9836. https://doi.org/10.1039/D0SC02592E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Selvaraj, B., Shanmugam, G., Kamaraj, S., et al., Chemistry Select, 2022, vol. 7, no. 43, p. e202203197. https://doi.org/10.1002/slct.202203197

    Article  CAS  Google Scholar 

  130. Balamurugan, S., Ganesan, S., Kamaraj, S., et al., Inorg. Chem., 2021, vol. 60, no. 3, p. 1937. https://doi.org/10.1021/acs.inorgchem.0c03406

    Article  CAS  Google Scholar 

  131. Saygili, Y., Stojanovic, M., Flores-Diaz, N., et al., Inorganics, 2019, vol. 7, no. 3, p. 1. https://doi.org/10.3390/inorganics7030030

    Article  CAS  Google Scholar 

  132. Hogue, R.W. and Armstrong, C.G., ChemSusChem, 2019, vol. 12, p. 4506. https://doi.org/10.1002/cssc.201901702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Benck, T.R., Hellstern, J., et al., ACS Catal., 2014, vol. 4, p. 3957. https://doi.org/10.1021/cs500923c

    Article  CAS  Google Scholar 

  134. Tamirat, A.G., Guan, X., Liu, J., et al., Chem. Soc. Rev., 2020, vol. 49, p. 7454. https://doi.org/10.1039/D0CS00489H

    Article  CAS  PubMed  Google Scholar 

  135. Ferreira, H., Conradie, M.M., and Conradie, J., Data Brief, 2018, vol. 21, p. 866. https://doi.org/10.1016/j.dib.2018.10.046

    Article  PubMed  PubMed Central  Google Scholar 

  136. Nakada, A., Matsumoto, T., and Chang, H.-C., Coord. Chem. Rev., 2022, vol. 473, p. 214804. https://doi.org/10.1021/acs.inorgchem.5b02000

    Article  CAS  Google Scholar 

  137. Baryshnikova, S.V. and Poddel’sky, A.I., Molecules, 2022, vol. 27, no. 12, p. 3928. https://doi.org/10.3390/molecules27123928

  138. Römelt, C., Weyhermüller, T., and Wieghardt, K., Coord. Chem. Rev., 2019, vol. 380, p. 287. https://doi.org/10.1016/j.ccr.2018.09.018

    Article  CAS  Google Scholar 

  139. Sinha, S., Das, S., Sikari, R., et al., Inorg. Chem., 2017, vol. 56, p. 14084. https://doi.org/10.1021/acs.inorgchem.7b02238

    Article  CAS  PubMed  Google Scholar 

  140. Fujita, D., Sugimoto, H., Morimoto, Y., et al., Inorg. Chem., 2018, vol. 57, no. 16, p. 9738. https://doi.org/10.1021/acs.inorgchem.8b00289

    Article  CAS  PubMed  Google Scholar 

  141. Petrone, D.A., Ye, J., and Lautens, M., Chem. Rev., 2016, vol. 116, p. 8003. https://doi.org/10.1021/acs.chemrev.6b00089

    Article  CAS  PubMed  Google Scholar 

  142. Blanchard, S., Derat, E., Desage-El Murr, M., et al., Eur. J. Inorg. Chem., 2012, vol. 3, p. 376. https://doi.org/10.1002/EJIC.201100985

    Article  Google Scholar 

  143. Steuer, L., Kaifer, E., and Himmel, H.-J., Dalton Trans., 2021, vol. 50, p. 9467. https://doi.org/10.1039/D1DT01354H

    Article  CAS  PubMed  Google Scholar 

  144. Furan, S., Hupf, E., Boidol, J., et al., Dalton Trans., 2019, p. 4504. https://doi.org/10.1039/C9DT00088G

  145. Kumar Rao, G., Kumar, A., Singh, M.P., et al., ChemInform, 2014, vol. 45, no. 30, p. 1. https://doi.org/10.1016/j.jorganchem.2013.08.042

    Article  CAS  Google Scholar 

  146. Wang, K. and Kong, W., Chin. J. Chem., 2018, vol. 36, p. 247. https://doi.org/10.1002/cjoc.201700745

    Article  CAS  Google Scholar 

  147. Mashima, K., Bull. Chem. Soc. Jpn., 2020, vol. 93, p. 799. https://doi.org/10.1246/bcsj.20200056

    Article  CAS  Google Scholar 

  148. Kaim, W. and Schwederski, B., Coord. Chem. Rev., 2010, vol. 254, p. 1580. https://doi.org/10.1016/j.ccr.2010.01.009

    Article  CAS  Google Scholar 

  149. Silva, T.L., de Lourdes, M., de Azevedo, S.G., et al., Curr. Opin. Electrochem., 2020, vol. 24, p. 79. https://doi.org/10.1016/j.coelec.2020.06.011

    Article  CAS  Google Scholar 

  150. Ren, Y., Forte, J., Cheaib, K., et al., iScience, 2020, vol. 23, p. 100955. https://doi.org/10.1016/j.isci.2020.100955

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  151. Que, L. and Tolman, W.B., Nature, 2008, vol. 455, p. 333. https://doi.org/10.1038/nature07371

  152. Singhal, S. and Ansari, M.N., Metal Complexes of Sulfur Containing Ligands, LAP LAMBERT Academic, 2014.

    Google Scholar 

  153. Giovagnini, L., Sitran, S., Castagliuolo, I., et al., Dalton Trans., 2008, no. 47, p. 6699. https://doi.org/10.1039/B806341A

  154. Gagieva, S.Ch., Tautieva, M.A., Tsaloev, A.T., et al., Rus. J. Inorg. Chem., 2007, vol. 52, p. 1726. https://doi.org/10.1134/S0036023607110150

    Article  Google Scholar 

  155. Paradiso, V., Capaccio, V., Lamparelli, D.H., et al., Catalysts, 2020, vol. 10, no. 8, p. 825. https://doi.org/10.3390/catal10080825

    Article  CAS  Google Scholar 

  156. Beloglazkina, E.K., Majouga, A.G., Manzheliy, E.A., et al., Polyhedron, 2015, vol. 85, p. 800. https://doi.org/10.1016/j.poly.2015.12.059

    Article  CAS  Google Scholar 

  157. McNamara, W.R., Han, Z., Alperin, P., et al., J. Am. Chem. Soc., 2011, vol. 133, p. 15368. https://doi.org/10.1021/ja207842r

    Article  CAS  PubMed  Google Scholar 

  158. Bonneval, B.G., Ching, K.I.M.-C., Alary, F., et al., Coord. Chem. Rev., 2010, vol. 254, nos. 13–14, p. 1457. https://doi.org/10.1016/j.ccr.2010.02.019

    Article  CAS  Google Scholar 

  159. Hu, L., Qin, J., Zhou, N., et al., Dyes Pigm., 2012, vol. 92, no. 3, p. 1223. https://doi.org/10.1016/j.dyepig.2011.08.003

    Article  CAS  Google Scholar 

  160. Belo, D. and Almeida, M., Coord. Chem. Rev., 2010, vol. 254, no. 13, p. 1479. https://doi.org/10.1016/j.ccr.2009.12.011

    Article  CAS  Google Scholar 

  161. Deng, Q., Han, J., Zhao, J., et al., J. Catalysis, 2021, vol. 393, p. 140. https://doi.org/10.1016/j.jcat.2020.11.016

    Article  CAS  Google Scholar 

  162. Kar, S. and Milstein, D., Acc. Chem. Res., 2022, vol. 55, p. 2304. https://doi.org/10.1021/acs.accounts.2c00328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Mondol, R. and Otten, E., Inorg. Chem., 2019, vol. 58, no. 9, p. 6344. https://doi.org/10.1021/acs.inorgchem.9b0055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Klementyeva, S.V., Gritsan, N.P., Khusniyarov, M.M., et al., Chemistry—A European J., 2017, vol. 23, no. 6, p. 1278. https://doi.org/10.1002/chem.201604340

    Article  CAS  Google Scholar 

  165. Maity, R., Birenheide, B.S., Breher, F., et al., ChemCatChem, 2021, vol. 13, p. 2337. https://doi.org/10.1002/cctc.202001951

    Article  CAS  Google Scholar 

  166. Kreysa, G., Ota, K., and Savinell, R.F., Encyclopedia of Applied Electrochemistry, 2014, p. 832.

    Book  Google Scholar 

  167. Mitsudo, K., Shiraga, T., and Tanaka, H., Tetrahedron Lett., 2008, vol. 49, no. 46, p. 6593. https://doi.org/10.1016/j.tetlet.2008.09.022

    Article  CAS  Google Scholar 

  168. Zhuang, H., Li, H., Zhang, S., Yin, Y., et al., Chin. Chem. Lett., 2020, vol. 31, no. 1, p. 39. https://doi.org/10.1016/j.cclet.2019.06.027

    Article  CAS  ADS  Google Scholar 

  169. Ma, Z., Mahmudov, K.T., Aliyeva, V.A., et al., Coord. Chem. Rev., 2020, vol. 423, no. 15, p. 213482. https://doi.org/10.1016/j.ccr.2020.213482

    Article  CAS  Google Scholar 

  170. Mitsudo, K., Kaide, T., Nakamoto, E., et al., J. Am. Chem. Soc., 2007, vol. 129, no. 8, p. 2246. https://doi.org/10.1021/ja069043r

    Article  CAS  PubMed  Google Scholar 

  171. Nutting, J.E., Rafiee, M., and Stahl, S.S., Chem. Rev., 2018, vol. 118, no. 9, p. 4834. https://doi.org/10.1021/acs.chemrev.7b00763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Cheng, X., Lei, A., Mei, T.-S., et al., CCS Chem., 2022, vol. 4, p. 1120. https://doi.org/10.31635/ccschem.021.202101451

    Article  CAS  Google Scholar 

  173. Du, H.-Y., Chen, S.-C., Su, X.-J., et al., J. Am. Chem. Soc., 2018, vol. 140, no. 4, p. 1557. https://doi.org/10.1021/jacs.8b00032

    Article  CAS  PubMed  Google Scholar 

  174. Li, L.J., Zhang, S., Wang, J., et al., Molecules, 2022, vol. 27, p. 1399. https://doi.org/10.3390/molecules27041399

  175. Lukoyanov, A.N., Fomenko, I.S., Gongola, M.I., et al., Molecules, 2021, vol. 26, no. 18, p. 5706. https://doi.org/10.3390/molecules26185706

  176. Nie, W., Tarnopol, D.E., and McCrory, C.C.L., J. Am. Chem. Soc., 2021, vol. 143, no. 10, p. 3764. https://doi.org/10.1021/jacs.0c09357

    Article  CAS  PubMed  Google Scholar 

  177. Hsieh, C.-H., Ding, S., Erdem, O.F., et al., Nat. Comm., 2014, p. 1. https://doi.org/10.1038/ncomms4684

  178. Lee, M.-Y., Kahl, C., Kaeffer, N., et al., J. Am. Chem. Soc., 2022, vol. 2, p. 573. https://doi.org/10.1021/jacs.2c08531

    Article  CAS  Google Scholar 

  179. Hernández-Padilla, G., Cruz, M., Rebolledo-Chávez, J.P.F., et al., J. Mol. Struct., 2021, vol. 1245, no. 7, p. 131026. https://doi.org/10.1016/j.molstruc.2021.131026

    Article  CAS  Google Scholar 

  180. Wuttig, A., Derrick, J.S., Loipersberger, M., et al., J. Am. Chem. Soc., 2021, vol. 143, no. 18, p. 6990. https://doi.org/10.1021/jacs.1c01487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Gao, Y., Zhang, B., He, J., et al., J. Am. Chem. Soc., 2023, vol. 145, no. 21, p. 11518. https://doi.org/10.1021/jacs.3c03337

    Article  CAS  PubMed  Google Scholar 

  182. Chen, M., Wang, J., Kan, Y., et al., Org. Lett., 2023, vol. 5, no. 24, p. 4540. https://doi.org/10.1021/acs.orglett.3c01582

    Article  CAS  Google Scholar 

  183. Waniek, S.D., Klett, J., Forsterand, C., et al., Beilstein J. Org. Chem., 2018, vol. 14, p. 1004. https://doi.org/10.3762/bjoc.14.86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Budnikova, Y.H., Dolengovsky, E.L., Tarasov, M.V., et al., Front. Chem., 2022, vol. 10. https://doi.org/10.3389/fchem.2022.1054116

  185. Meyer, T.H., Samanta, R.C., Del Vecchio, A., et al., Chem. Science, 2020, vol. 12, p. 2890. https://doi.org/10.1039/D0SC05924B

    Article  Google Scholar 

  186. Chen, M., Wu, Z.J., Song, J. et al., Angew. Chem. Int. Ed., 2022, vol. 61, p. e202115954. https://doi.org/10.1002/anie.202115954

    Article  CAS  ADS  Google Scholar 

  187. Lee, Y., Tripodi, G.L., Jeong, D., et al., J. Am. Chem. Soc., 2022, vol. 144, no. 45, p. 20752. https://doi.org/10.1021/jacs.2c08531

    Article  CAS  PubMed  Google Scholar 

  188. Kondo, T. and Mitsudo, T.A., Chem. Rev., 2000, vol. 100, p. 3205. https://doi.org/10.1021/cr9902749

    Article  CAS  PubMed  Google Scholar 

  189. Dzhemilev, U.M. and Kunakova, R.V., J. Organomet. Chem., 1993, vol. 455, no. 10, p. 1. https://doi.org/10.1016/0022-328X(93)80375-L

    Article  CAS  Google Scholar 

  190. Zeida, A. and Radi, R., Redox Chemistry and Biology of Thiols, 2022, p. рр. 99−113.

    Google Scholar 

  191. Li, H., Tao, C., Xie, Y., et al., Green Chem., 2021, vol. 23, p. 6059. https://doi.org/10.1039/D1GC01415C

    Article  CAS  Google Scholar 

  192. Karamia, B., Montazerozohoria, M., and Habibib, M.H., J. Chem. Res., 2006, p. 490. https://doi.org/10.3184/030823406778256441

  193. Tang, X., Huang, L., Xu, Y., et al., Angew. Chem. Int. Ed., 2014, vol. 53, no. 16, p. 4205. https://doi.org/10.1002/anie.201311217

    Article  CAS  Google Scholar 

  194. Terent’ev, A.O., Mulina, O.M., Pirgach, D.A., et al., RSC Adv., 2016, vol. 6, no. 96, p. 93476. https://doi.org/10.1039/C6RA19190H

    Article  CAS  ADS  Google Scholar 

  195. Arisawa, M. and Yamaguchi, M., Molecules, 2020, vol. 25, no. 16, p. 3595. https://doi.org/10.3390/molecules25163595

  196. Czyz, M.L., Weragoda, G.K., Monaghan, R., et al., Org. Biomol. Chem., 2018, vol. 16, p. 1543. https://doi.org/10.1039/C8OB00238J

    Article  CAS  PubMed  Google Scholar 

  197. Guo, S., He, W., Xiang, J., et al., Tetrahedron Lett., 2015, vol. 56, no. 17, p. 2159. https://doi.org/10.1016/j.tetlet.2015.01.068

    Article  CAS  Google Scholar 

  198. Ananikov, V., Orlov, N., and Beletskaya, I.P., Organometallics, 2006, vol. 25, no. 8, p. 1970. https://doi.org/10.1021/om051105j

    Article  CAS  Google Scholar 

  199. Urriolabeitia, E.P. and Ruiza, S., Org. Biomol. Chem., 2019, vol. 17, p. 2542. https://doi.org/10.1039/C8OB03201G

    Article  CAS  PubMed  Google Scholar 

  200. Xiong, Y.-S., Yu, Y., Weng, J., et al., Org. Chem. Front., 2018, vol. 5, p. 982. https://doi.org/10.1039/C7QO01016H

    Article  CAS  Google Scholar 

  201. Prasad, D.J.C. and Sekar, G., Org. Lett., 2011, vol. 13, p. 1008. https://doi.org/10.1021/ol103041s

    Article  CAS  PubMed  Google Scholar 

  202. Xu, H.-J., Zhao, Y.-Q., Feng, T., et al., Org. Chem., 2012, vol. 77, p. 2649. https://doi.org/10.1021/jo300100x

    Google Scholar 

  203. Martins, G.M., Meirinho, A.G., Ahmed, N., et al., ChemElectroChem., 2019, vol. 6, no. 24, p. 5928. https://doi.org/10.1002/celc.201901525

    Article  CAS  Google Scholar 

  204. Fährmann, J. and Hilt, G., Chem.-Eur. J., 2021, vol. 27, no. 43, p. 11141. https://doi.org/10.1002/chem.202101023

    Article  CAS  PubMed  Google Scholar 

  205. Swaroop, T.R., Shivaprasad, C.M., Preetham, R., et al., Phosphorus, Sulfur, and Silicon, and the Related Elements, 2022, vol. 197, no. 9, p. 891. https://doi.org/10.1080/10426507.2022.2057498

    Article  CAS  Google Scholar 

  206. Wang, J., Zheng, T., Liu, H., et al., Electrochim. Acta, 2020, vol. 356, p. 136706. https://doi.org/10.1016/j.electacta.2020.136706

    Article  CAS  Google Scholar 

  207. Mahmoudi, H., Salimi, A., and Rostami, A., Tetrahedron Lett., 2023, vol. 117, p. 154368. https://doi.org/10.1016/j.tetlet.2023.154368

    Article  CAS  Google Scholar 

  208. Lou, T.S.B., Kawamata, Y., and Ewing, T., Angew. Chem., Int. Ed. Engl., 2022, vol. 61, no. 37, p. e202208080. https://doi.org/10.1002/anie.202208080

    Article  CAS  PubMed  Google Scholar 

  209. Shinkar’, E.V., Shvetsova, A.V. Okhlobystin, A.O., et al., Russ. J. Electrochem., 2020, vol. 56, p. 285. https://doi.org/10.1134/S1023193520040138

    Article  Google Scholar 

  210. Berberova, N.T., Shinkar, E.V., Smolyaninov, I.V., et al., Russ. Chem. Bull., 2018, vol. 67, no. 1, p. 108. https://doi.org/10.1007/s11172-018-2044-4

    Article  CAS  Google Scholar 

  211. Burmistrova, D.A., Galustyan, A., Smolyaninov, I.V., et al., J. Electrochem. Soc., 2021, vol. 168, no. 5, p. 055501. https://doi.org/10.1149/1945-7111/abfe43

    Article  CAS  ADS  Google Scholar 

  212. Qian, B.-C., Zhu, C.-Z., and Shen, G.-B., ACS Omega, 2022, vol. 7, no. 44, p. 39531. https://doi.org/10.1021/acsomega.2c04205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Du, J., Du, Y., and Gui, Q., Synthesis, Special Issue Electrochemical Organic Syntheses, 2023, vol. 55. https://doi.org/10.1055/a-2096-4349

  214. Cheung, K.C., Wong, W.-L., Ma, D.-L., et al., Coord. Chem. Rev., 2007, vol. 251, nos 17-20, p. 2367. https://doi.org/10.1016/j.ccr.2007.04.004

    Article  CAS  Google Scholar 

  215. Okhlobystin, A.O., Okhlobystin, A.V., Shinkar, E.V., et al., Dokl. Chem., 2010, vol. 435, no. 3, p. 1. https://doi.org/10.1134/S001250081011008X

    Article  CAS  Google Scholar 

  216. Okhlobystina, A.O., Smolyaninova, I.V., Okhlobystina, A.V., et al., Russ. J. Coord. Chem., 2013, vol. 39, no. 1, p. 33. https://doi.org/10.1134/S1070328413010077

    Article  CAS  Google Scholar 

  217. Berberova, N.T., Shinkar, E.V., Smolyaninov, I.V., et al., Russ. J. Coord. Chem., 2017, vol. 43, p. 578. https://doi.org/10.1134/S107032841707003X

    Article  CAS  Google Scholar 

  218. Lavrent’ev, V.A., Shinkar’, E.V., Smolyaninov, I.V., et al., Russ. J. Coord. Chem., 2021, vol. 47, no. 5, p. 341. https://doi.org/10.1134/S1070328421050031

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 23-13-00201) (analysis of advantages of indirect synthesis and application field of metal complexes with redox-active ligands as mediators in electroorganic reactions) and Research, Design, and Engineering Developments (state registration no. 123031400121-0 FAR) (analysis of advantages of electrocatalysis in the presence of metal complexes compared to homogeneous catalysis and its specific features under heterogeneous conditions).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Shinkar’.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Yablonskaya

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shinkar’, E.V., Smolyaninov, I.V. & Berberova, N.T. Metal Complexes with Redox-Active Ligands in the Indirect Electrosynthesis of Organic Sulfur Compounds. Russ J Coord Chem 49 (Suppl 2), S128–S158 (2023). https://doi.org/10.1134/S107032842360122X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107032842360122X

Keywords: 

Navigation