Skip to main content
Log in

Construction of Texture Feature Profiles Using Whole Core Images

  • Analysis and Synthesis of Signals and Images
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

Studying images of a whole core (a sample of rock extracted from a well) is in demand in modern geophysics. The subject area determines the specifics of core image processing and the form of presentation of the results. A common way to represent well data is by depth-ordered measurement values. Core samples are also ordered by depth, and sample images are a collection of individual photographs or tomographic scans, often without data at some depths. A typical image of one core fragment contains a meter-long section of rock. In practice, it is often necessary to evaluate the characteristics of centimeter intervals. An approach to creating an ensemble of textural features of core images presented as depth-ordered profiles is proposed. The results can be used in conjunction with other geological and geophysical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

REFERENCES

  1. I. A. Seleznev, V. V. Abashkin, A. A. Chertova, S. B. Istomin, A. F. Samokhvalov, and D. Romanov, ‘‘Quantitative analysis of whole core images,’’ in Geomodel 2019, Gelendzhik, Krasnodar krai, 2019 (European Association of Geoscientists & Engineers, 2019), pp. 1–5. https://doi.org/10.3997/2214-4609.201950103

    Book  Google Scholar 

  2. V. V. Abashkin, I. A. Seleznev, A. A. Chertova, S. B. Istomin, D. V. Romanov, and A. F. Samokhvalov, ‘‘Quantitative analysis of whole core photos for continental oilfield of Western Siberia (Russian),’’ in SPE Russian Petroleum Technology Conference, Moscow, 2020 (Society of Petroleum Engineers, 2020), p. SPE-202017-MS. https://doi.org/10.2118/202017-ru

  3. V. V. Abashkin, I. A. Seleznev, A. A. Chertova, A. Samokhvalov, S. Istomin, and D. Romanov, ‘‘Digital analysis of the whole core photos,’’ in First EAGE Digitalization Conf. and Exhibition, Vienna, 2020 (European Association of Geoscientists & Engineers, 2020), pp. 1–5. https://doi.org/10.3997/2214-4609.202032058

  4. I. A. Seleznev, A. A. Chertova, and V. V. Abashkin, ‘‘Digital extraction of core properties from whole core photos,’’ in Proc. Int. Symp. of the Society of Core Analysts (SCA 2021), Virtual Conf. (2021).

  5. I. A. Seleznev, V. V. Abashkin, A. A. Chertova, D. O. Makienko, S. B. Istomin, D. V. Romanov, and A. F. Samokhvalov, ‘‘Joint usage of whole core images obtained in different frequency ranges for the tasks of automatic lithotype description and modeling of rocks’ petrophysics properties,’’ in Geomodel 2020, Gelendzhik, Krasnodar krai, 2021 (European Association of Geoscientists & Engineers, 2021), pp. 1–5. https://doi.org/10.3997/2214-4609.202050090

    Book  Google Scholar 

  6. A. Perarnau, ‘‘Use of core photo data in petrophysical analysis,’’ in Proc. SPWLA 52nd Annu. Logging Symp., Colorado Springs, Colo., 2011 (2011), pp. SPWLA-2011-Z. https://onepetro.org/SPWLAALS/proceedings-pdf/SPWLA11/All-SPWLA11/SPWLA-2011-Z/1662814/spwla-2011-z.pdf.

  7. A. Gonzalez, Z. Heidari, and O. Lopez, ‘‘Automated rock classification using high-resolution CT-scan images and core photos in a siliciclastic formation used for CO\({}_{2}\) storage,’’ in Proc. SPE Annu. Tech. Conf. and Exhibition, Houston, Texas, 2022 (Society of Petroleum Engineers, 2022), p. SPE-209979-MS. https://doi.org/10.2118/209979-ms

  8. K. Chawshin, A. Gonzalez, C. F. Berg, D. Varagnolo, Z. Heidari, and O. Lopez, ‘‘Classifying lithofacies from textural features in whole core CT-scan images,’’ SPE Reservoir Eval. Eng. 24, 341–357 (2021). https://doi.org/10.2118/205354-pa

    Article  CAS  Google Scholar 

  9. A. Gonzalez, L. Kanyan, Z. Heidari, and O. Lopez, ‘‘Integrated multi-physics workflow for automatic rock classification and formation evaluation using multi-scale image analysis and conventional well logs,’’ in SPWLA 60th Annu. Logging Symp. Trans., The Woodlands, Texas, 2019 (Society of Petrophysicists and Well Log Analysts, 2019), pp. SPWLA-2019-A. https://doi.org/10.30632/t60als-2019_a

  10. V. Chandra, G. Tallec, F. Gamba, and V. Vahrenkamp, ‘‘A systematic machine learning approach to improve facies prediction using multiscale well log and image data,’’ in Proc. 83rd EAGE Annu. Conf. & Exhibition, Madrid, 2022 (European Association of Geoscientists & Engineers, 2022), pp. 1–5. https://doi.org/10.3997/2214-4609.202210965

  11. T. Martin, R. Meyer, and Z. Jobe, ‘‘Centimeter-scale lithology and facies prediction in cored wells using machine learning,’’ Front. Earth Sci. 9, 659611 (2021). https://doi.org/10.3389/feart.2021.659611

  12. ‘‘National Offshore Petroleum Information Management System,’’ https://nopims.dmp.wa.gov.au/Nopims. Cited May 28, 2023.

  13. F. Alzubaidi, P. Mostaghimi, P. Swietojanski, S. R. Clark, and R. T. Armstrong, ‘‘Automated lithology classification from drill core images using convolutional neural networks,’’ J. Pet. Sci. Eng. 197, 107933 (2021). https://doi.org/10.1016/j.petrol.2020.107933

  14. N. Houshmand, S. Goodfellow, K. Esmaeili, and J. C. Ordóñez C, ‘‘Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques,’’ Appl. Comput. Geosci.s 16, 100104 (2022). https://doi.org/10.1016/j.acags.2022.100104

  15. E. E. Baraboshkin, L. S. Ismailova, D. M. Orlov, E. A. Zhukovskaya, G. A. Kalmykov, O. V. Khotylev, E. Yu. Baraboshkin, and D. A. Koroteev, ‘‘Deep convolutions for in-depth automated rock typing,’’ Comput. Geosci.s 135, 104330 (2020). https://doi.org/10.1016/j.cageo.2019.104330

  16. X. Liu and D. L. Wang, ‘‘Image and texture segmentation using local spectral histograms,’’ IEEE Trans. Image Process. 15, 3066–3077 (2006). https://doi.org/10.1109/tip.2006.877511

    Article  ADS  PubMed  Google Scholar 

  17. Ch.-Ch. Hung, E. Song, and Yi. Lan, ‘‘Texture features and image texture models,’’ in Image Texture Analysis (Springer, Cham, 2019), pp. 15–50. https://doi.org/10.1007/978-3-030-13773-1_2

  18. A. M. Vil’kin, I. V. Safonov, and M. A. Egorova, ‘‘Algorithm for segmentation of documents based on texture features,’’ Pattern Recognit. Image Anal. 23, 153–159 (2013). https://doi.org/10.1134/S1054661813010136

    Article  Google Scholar 

  19. D. O. Makienko and A. M. Bolotnyi, ‘‘Cooccurrence matrices in problems of texture comparison,’’ in Proc. 28th Int. Sci. Conf. of Students, Doctoral Students, and Young Scientists Lomonosov-2021 (MAKS Press, Moscow, 2021), pp. 63–66.

  20. ‘‘OpenCV image processing library,’’ http://opencv.org. Cited May 28, 2023.

  21. Y. Rubner, C. Tomasi, and L. J. Guibas, ‘‘A metric for distributions with applications to image databases,’’ in Sixth Int. Conf. on Computer Vision, Bombay, India, 1998 (IEEE, 1998), pp. 59–66. https://doi.org/10.1109/iccv.1998.710701

  22. S.-H. Cha and S. N. Srihari, ‘‘On measuring the distance between histograms,’’ Pattern Recognit. 35, 1355–1370 (2002). https://doi.org/10.1016/s0031-3203(01)00118-2

    Article  ADS  Google Scholar 

  23. G. Kylberg, Kylberg Texture Dataset v. 1.0 (Centre for Image Analysis, Uppsala, Sweden, 2011).

  24. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay, ‘‘Scikit-learn: Machine learning in Python,’’ J. Mach. Learn. Res. 12, 2825–2830 (2011).

    MathSciNet  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. O. Makienko.

Ethics declarations

As author of this work, I declare that I have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Translated by I. Obrezanova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makienko, D.O. Construction of Texture Feature Profiles Using Whole Core Images. Optoelectron.Instrument.Proc. 59, 541–550 (2023). https://doi.org/10.3103/S8756699023050060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699023050060

Keywords:

Navigation