Skip to main content
Log in

Thermoelectric, magneto-electronic, and mechanical properties of new \(X_{2}CeVO_{6} (X=Sr,\; Ba)\) double perovskites for thermoelectric and spintronic applications

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The Full Potential Linearised Augmented Plane Wave method (FP-LAPW) is used to design the structural, elastic-mechanical, electronic, magnetic, and thermoelectric prop­erties of new cubic double perovskite oxides \(X_{2}CeVO_{6} (X=Sr,\; Ba)\). The tolerance factor and elastic parameters show and ensure the stability and formation of both perovskites in the cubic phase. Additionally, the predicted mechanical constants show that \(X_{2}CeVO_{6} (X=Sr,\; Ba)\) behave as stable ductile materials. Then, spin-polarized calculations show ferromagnetic and half-metallic behavior for both compounds with a total magnetic moment equal to \(1\; \mu _{\beta }\). Thermoelectric parameters of both materials show high power factor and n-type conductivity, due to the multiple oxidation states of Vanadium. Therefore, these results show that the proposed perovskites \(X_{2}CeVO_{6} (X=Sr,\; Ba)\) can be promising materials for spintronic and thermoelectric applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data available upon request from authors].

References

  1. Q. Tang, X. Zhu, J. Mater. Chem. C 10, 15301 (2022). https://doi.org/10.1039/d2tc03199j

    Article  Google Scholar 

  2. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488–1495 (2001). https://doi.org/10.1126/science.1065389

    Article  ADS  Google Scholar 

  3. A. Makarov, T. Windbacher, V. Sverdlov, S. Selberherr, Semicond. Sci. Technol. 31, 113006 (2016). https://doi.org/10.1088/0268-1242/31/11/113006

    Article  ADS  Google Scholar 

  4. S.A. Mir, A.Q. Seh, D.C. Gupta, RSC Adv. 10, 36241 (2020). https://doi.org/10.1039/d0ra06739c

    Article  ADS  Google Scholar 

  5. W. Chen, M. Mizumaki, H. Seki, M.S. Senn, T. Saito, D. Kan, J.P. Attfield, Y. Shimakawa, Nat. Commun. 5, 3909 (2014). https://doi.org/10.1038/ncomms4909

    Article  ADS  Google Scholar 

  6. S.D. Sarma, Am. Sci. 89, 516–523 (2001). https://doi.org/10.1511/2001.6.516

    Article  ADS  Google Scholar 

  7. M. Irfan, G. Murtaza, N. Muhammad, S. Tahir, H.H. Raza, B. Sabir, M. Iftikhar, S. Sharif, Phys. E Low-Dimens. Syst. Nanostruct. 148, 115635 (2023). https://doi.org/10.1016/j.physe.2022.115635

    Article  Google Scholar 

  8. A. Abbassi, M. Agouri, F. Iacomi, B. Manaut, B. Elhadadi, J. Supercond. Nov. Magn. 36, 995–1001 (2023). https://doi.org/10.1007/s10948-023-06537-0

    Article  Google Scholar 

  9. S. Vasala, M. Karppinen, Progress Solid State Chem. 43, 1–36 (2015). https://doi.org/10.1016/j.progsolidstchem.2014.08.001

    Article  Google Scholar 

  10. H. Absike, N. Baaalla, L. Attou, H. Labrim, B. Hartiti, H. Ez-zahraouy, Solid State Commun. 345, 114684 (2022). https://doi.org/10.1016/j.ssc.2022.114684

    Article  Google Scholar 

  11. H. Absike, N. Baaalla, R. Lamouri, H. Labrim, H. Ez-zahraouy, Int. J. Energy Res. 46, 11053–11064 (2022). https://doi.org/10.1002/er.7907

    Article  Google Scholar 

  12. I. Hamideddine, N. Tahiri, O.E. Bounagui, H. Ez-Zahraouy, J. Korean Ceram. Soc. 59, 350–358 (2022). https://doi.org/10.1007/s43207-021-00178-6

    Article  Google Scholar 

  13. S.A. Mir, D.C. Gupta, Magn. Magn. Mater. 493, 165722 (2020). https://doi.org/10.1016/j.jmmm.2019.165722

    Article  Google Scholar 

  14. M.A. Green, M. Ho-Baillie, H.J. Snaith, Nat. Photon 8, 506–514 (2014). https://doi.org/10.1038/nphoton.2014.134

    Article  ADS  Google Scholar 

  15. I. Hamideddine, H. Jebari, N. Tahiri, O. El Bounagui, H. Ez-Zahraouy, Int. J. Energy Res. 46, 20755–20765 (2022). https://doi.org/10.1002/er.8372

    Article  Google Scholar 

  16. S. Dahbi, N. Tahiri, O.E. Bounagui, H. Ez-Zahraouy, Int. J. Energy Res. 46, 8433–8442 (2022). https://doi.org/10.1002/er.7631

    Article  Google Scholar 

  17. A. Talapatra, B.P. Uberuaga, C.R. Stanek, G. Pilania, Chem. Mater. 33, 845–858 (2021). https://doi.org/10.1021/acs.chemmater.0c03402

    Article  Google Scholar 

  18. I. Hamideddine, H. Zitouni, N. Tahiri, O. El Bounagui, H. Ez-Zahraouy, Appl. Phys. A 127, 443 (2021). https://doi.org/10.1007/s00339-021-04600-y

    Article  ADS  Google Scholar 

  19. N.N. Kiselyova, V.A. Dudarev, A.V. Stolyarenko, A.A. Dokukin, O.V. Sen’ko, V.V. Ryazanov, M.A. Vitushko, V.S. Pereverzev-Orlov, E.A. Vaschenko, Inorg. Mater. Appl. Res. 13, 277–293 (2022). https://doi.org/10.1134/S2075113322020228

    Article  Google Scholar 

  20. Y. Wang, L. Zhang, S. Ma, Y. Zhao, D. Tan, B. Chen, Appl. Phys. Lett. 118, 231903 (2021). https://doi.org/10.1063/5.0054742

    Article  ADS  Google Scholar 

  21. A. Hanif, S.A. Aldaghfag, A. Aziz, M. Yaseen, A. Murtaza, Energy Res. 46, 1–11 (2022). https://doi.org/10.1002/er.7862

    Article  Google Scholar 

  22. Y.H. Huang, R.I. Dass, Z.L. Xing, J.B. Goodenough, Science 312, 254 (2006). https://doi.org/10.1126/science.1125877

    Article  ADS  Google Scholar 

  23. P. Roy, V. Waghmare, T. Maiti, RSC Adv. 6, 54636–54643 (2016). https://doi.org/10.1039/C6RA09629H

    Article  ADS  Google Scholar 

  24. M. Faizan, G. Murtaza, S.H. Khan, A.U. Khan, A. Mehmood, R. Khenata, Sajjad Hussain, Bull. Mater. Sci. 39, 1419–1425 (2016). https://doi.org/10.1007/s12034-016-1288-6

    Article  Google Scholar 

  25. A. Waqdim, M. Agouri, A. Abbassi, B. Elhadadi, Z. Zidane, S. Taj, B. Manaut, M. Driouich, M. El Idrissi, Mater. Sci. Semicond. Process. 158, 10734 (2023). https://doi.org/10.1016/j.mssp.2023.107340

    Article  Google Scholar 

  26. Y.A. Alsabah, A.T. Elden, M.S. AlSalhi, A.A. Elbadawi, M.A. Siddig, Results Phys. 15, 102589 (2019). https://doi.org/10.1016/j.rinp.2019.102589

    Article  Google Scholar 

  27. M. Agouri, A. Waqdim, A. Abbassi, Z. Zidane, S. Taj, B. Manaut, M. Driouich, MSEB 294, 116550 (2023). https://doi.org/10.1016/j.mseb.2023.116550

    Article  Google Scholar 

  28. A. Zaghrane, H. Ouhenou, E. Darkaoui, M. Agouri, A. Abbassi, Y. Mekaoui, S. Taj, B. Manaut, Chin. J. Phys. (2023). https://doi.org/10.1016/j.cjph.2023.08.001

    Article  Google Scholar 

  29. X. Chen, J. Xu, Y. Xu, F. Luo, Y. Du, Inorg. Chem. Front. 6, 2226–2238 (2019). https://doi.org/10.1039/C9QI00512A

    Article  Google Scholar 

  30. W.T.A. Harrison, J.K.P. Reis, A.J. Jacobson, L.F. Schneemeyer, J.V. Waszczak, Chem. Muter. 7, 2161–21677 (1995). https://doi.org/10.1021/cm00059a025

    Article  Google Scholar 

  31. A. Dutta, P.K. Mukhopadhyay, T.P. Sinha, D. Das, S. Shannigrahi, Solid State Sci. 58, 64–69 (2016). https://doi.org/10.1016/j.solidstatesciences.2016.05.008

    Article  ADS  Google Scholar 

  32. H.H. Xie, Q. Gao, L. Li, G. Lei, X.R. Hu, JBo. Deng, Solid State Commun. 239, 49–54 (2016). https://doi.org/10.1016/j.ssc.2016.04.008

    Article  ADS  Google Scholar 

  33. T. Maiti, M. Saxena, P. Roy, Mater. Res. 34, 1 (2019). https://doi.org/10.1557/jmr.2018.376

    Article  ADS  Google Scholar 

  34. S. Berri, J. Magn. Magn. Mater. 385, 124–128 (2015). https://doi.org/10.1016/j.jmmm.2015.03.025

    Article  ADS  Google Scholar 

  35. S. Berri, Comput. Condens. Matter 28, e00586 (2021). https://doi.org/10.1016/j.cocom.2021.e00586

    Article  Google Scholar 

  36. E.K.U. Gross, R.M. Dreizler, Dens. Funct. Theory (1993). https://doi.org/10.1007/978-1-4757-9975-0

    Article  Google Scholar 

  37. P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G.K.H. Madsen, L.D. Marks, Chem. Phys. 152, 074101 (2020). https://doi.org/10.1063/1.5143061

    Article  ADS  Google Scholar 

  38. F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009). https://doi.org/10.1103/PhysRevLett.102.226401

    Article  ADS  Google Scholar 

  39. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  40. S. A. Tolba, et al., Density Functional Calculations - Recent Progresses of Theory and Application, 054115 (2018), https://doi.org/10.5772/intechopen.72020

  41. C.E. Calderon et al., Comput. Mater. Sci. 108, 233–238 (2015). https://doi.org/10.1016/j.commatsci.2015.07.019

    Article  Google Scholar 

  42. R. Golesorkhtabar, P. Pavone, J. Spitaler, P. Puschnig, C. Draxl, Comput. Phys. Commun. 184, 1861–1873 (2013). https://doi.org/10.1016/j.cpc.2013.03.010

    Article  ADS  Google Scholar 

  43. G.K.H. Madsen, D.J. Singh, Comput. Phys. Commun. 175, 67–71 (2006). https://doi.org/10.1016/j.cpc.2006.03.007

    Article  ADS  Google Scholar 

  44. V.M. Goldschmidt, Naturwissenschaften 14, 477–485 (1926). https://doi.org/10.1007/BF01507527

    Article  ADS  Google Scholar 

  45. Z. Li, M. Yang, J.S. Park, S.H. Wei, J.J. Berry, K. Zhu, Chem. Mater. 28, 284–292 (2016). https://doi.org/10.1021/acs.chemmater.5b04107

    Article  Google Scholar 

  46. C.J. Bartel, C. Sutton, B.R. Goldsmith, R. Ouyang, C.B. Musgrave, L.M. Ghiringhelli, M. Scheffler, Sci. Adv. 5, eaav0693 (2019). https://doi.org/10.1126/sciadv.aav0693

    Article  ADS  Google Scholar 

  47. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson, APL Mater. 1, 011002 (2013). https://doi.org/10.1063/1.4812323

    Article  ADS  Google Scholar 

  48. M.I. Hussain, R.M.A. Khalil, Mater. Sci. Semicond. Process. 152, 107050 (2022). https://doi.org/10.1016/j.mssp.2022.107050

    Article  Google Scholar 

  49. Z. Wu, E. Zhao, H. Xiang, X. Hao, X. Liu, J. Meng, Phys. Rev. B 76, 054115 (2007). https://doi.org/10.1103/PhysRevB.76.054115

    Article  ADS  Google Scholar 

  50. N. Pandech, K. Sarasamak, S. Limpijumnong, Appl. Phys. 117, 174108 (2015). https://doi.org/10.1063/1.4919837

    Article  Google Scholar 

  51. F. Mouhat, F.X. Coudert, Phys. Rev. B 90, 224104 (2014). https://doi.org/10.1103/PhysRevB.90.224104

    Article  ADS  Google Scholar 

  52. N.V. Skripnyak, A.V. Ponomareva, M.P. Belov, I.A. Abrikosov, Mater. Des. 140, 357–365 (2018). https://doi.org/10.1016/j.matdes.2017.11.071

    Article  Google Scholar 

  53. S.A. Dar, R. Sharma, V. Srivastava, U.K. Sakalle, RSC Adv. 9, 9522 (2019). https://doi.org/10.1039/c9ra00313d

    Article  ADS  Google Scholar 

  54. M.Y. Sofi, D.C. Gupta, Sci. Rep. 10(12), 19476 (2022). https://doi.org/10.1038/s41598-022-22633-y

    Article  ADS  Google Scholar 

  55. T. Ozaki, H. Matsumoto, S. Watanabe, S. Hanada, Mater. Trans. 45, 2776–2779 (2004). https://doi.org/10.2320/matertrans.45.2776

    Article  Google Scholar 

  56. S.F. Pugh, Lond. Edinb. Dublin Philos. Mag. J. Sci. 45, 823–843 (1954). https://doi.org/10.1080/14786440808520496

    Article  Google Scholar 

  57. G.N. Greaves, A.L. Greer, R.S. Lakes, T. Rouxel, Nat. Mater. 10, 823–837 (2011). https://doi.org/10.1038/nmat3177

    Article  ADS  Google Scholar 

  58. S. Kamran, K. Chen, L. Chen, Phys. Rev. B 79, 024106 (2009). https://doi.org/10.1103/PhysRevB.79.024106

    Article  ADS  Google Scholar 

  59. S.I. Ranganathan, M.O. Starzewski, Phys. Rev. L 101, 055504 (2008). https://doi.org/10.1103/PhysRevLett.101.055504

    Article  ADS  Google Scholar 

  60. H. Absike, M. Hajji, H. Labrim, A. Abbassi, H. Ez-Zahraouy, Superlattices Microstruct. 127, 128–138 (2019). https://doi.org/10.1016/j.spmi.2017.12.038

    Article  ADS  Google Scholar 

  61. M. Houmad, O. Dakir, A. Abbassi, A. Benyoussef, A. El Kenz, H. Ez-Zahraouy, Optik 127, 1867–1870 (2016). https://doi.org/10.1016/j.ijleo.2015.11.017

    Article  ADS  Google Scholar 

  62. S. Haid, M. Matougui, S. Benatmane, B. Bouadjemi, M. Houari, A. Zitouni, T. Lantri, S. Bentata, Supercond. Novel Magn. 34, 2893–2903 (2021). https://doi.org/10.1007/s10948-021-06011-9

    Article  Google Scholar 

  63. I. Hamideddine, N. Tahiri, O. El Bounagui, H. Ez-Zahraouy, Mater. Sci. Semicond. Process. 126, 105657 (2021). https://doi.org/10.1016/j.mssp.2020.105657

    Article  Google Scholar 

  64. W. Guenez, A. Bouguerra, I. Touaibia, F. Chemam, Condens. Matter 34, 505501 (2022). https://doi.org/10.1088/1361-648X/ac98e7

    Article  Google Scholar 

  65. S.A. Khandy, D.C. Gupta, Sci. Rep. 12, 19690 (2022). https://doi.org/10.1038/s41598-022-22070-x

    Article  ADS  Google Scholar 

  66. C. Zener, Phys. Rev. 82, 440 (1951). https://doi.org/10.1103/PhysRev.82.403

    Article  ADS  Google Scholar 

  67. H. Wang, W. Su, J. Liu, C. Wang, Materiomics 2, 225–236 (2016). https://doi.org/10.1016/j.jmat.2016.06.005

  68. S.I. Ranganathan, M.O. Starzewski, Mater. Renew. Sustain. Energy 9, 3 (2020). https://doi.org/10.1007/s40243-019-0163-y

  69. E. Haque, M.A. Hossain, Mater. Res. 34, 2635–2642 (2019). https://doi.org/10.1103/PhysRevLett.101.055504

    Article  ADS  Google Scholar 

  70. S. Hébert, D. Flahaut, C. Martin, S. Lemonnier, J. Noudem, C. Goupil, A. Maignan, Jiri Hejtmanek, Prog. Solid State Chem. 35, 457e467 (2007). https://doi.org/10.1016/j.progsolidstchem.2007.01.027

  71. M. Saxena, K. Tanwar, T. Maiti, Scripta Mater. 130, 205–209 (2017). https://doi.org/10.1016/j.scriptamat.2016.11.033

    Article  Google Scholar 

  72. M. Nabi, D.C. Gupta, RSC Adv. 9, 15852–15867 (2019). https://doi.org/10.1039/c9ra01797f

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Abbassi or B. Manaut.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agouri, M., Waqdim, A., Abbassi, A. et al. Thermoelectric, magneto-electronic, and mechanical properties of new \(X_{2}CeVO_{6} (X=Sr,\; Ba)\) double perovskites for thermoelectric and spintronic applications. Eur. Phys. J. B 97, 27 (2024). https://doi.org/10.1140/epjb/s10051-024-00663-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-024-00663-x

Navigation