Skip to main content
Log in

Nuclear isomers at the extremes of their properties

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The longer-lived excited nuclear states, referred as nuclear isomers, exist due to the hindered decays owing to their peculiar nucleonic structural surroundings. Some of these conditions, being exceptionally rare and limited to achieve, elevate certain isomers to the status of extreme and unusual isomers among their kin. For example, the E5 coupling of single-particle orbitals is rare and so are E5 decaying isomers. This review delves into some of such remarkable isomers scattered across the nuclear landscape while highlighting the possibilities to find more of them. Unique properties of some of them, harbor the potential for transformative applications in medicine and energy. An exciting example is that of the lowest energy isomer known so far in \(^{229}\)Th, which may help realize the dream of an ultra-precise nuclear clock in the coming decade. These isomers also offer an insight into the extremes of nuclear structure associated with them, which leads to their unusual status in energy, half-life, spin etc. The review attempts to highlight isomers with high-multipolarities, high-spins, high-energies, longest half-lives, extremely low energy, etc. A lack of theoretical understanding of the decay rates, half-lives and moments of these isomers is also pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availibility

No data associated in the manuscript.

References

  1. A.K. Jain, B. Maheshwari, A. Goel, Nuclear Isomers: A Primer (Springer Nature, Cham, 2021)

    Book  Google Scholar 

  2. S. Garg, B. Maheshwari, B. Singh, Y. Sun, A. Goel, A.K. Jain, Atom. Data Nucl. Data Tables 150, 101546 (2023)

    Article  CAS  Google Scholar 

  3. A.K. Jain, B. Maheshwari, S. Garg, M. Patial, B. Singh, Nucl. Data Sheets 128, 1 (2015)

    Article  ADS  CAS  Google Scholar 

  4. C.F. von Weizsacker, Naturewissenschaften 24, 813 (1936)

    Article  ADS  Google Scholar 

  5. E. Feenberg, Phys. Rev. 75, 320 (1949)

    Article  ADS  CAS  Google Scholar 

  6. A. Bohr, B.R. Mottelson, Nuclear Structure. Vol. I: Single-Particle Motion; Vol. II: Nuclear Deformations (W. A. Benjamin Inc, New York, 1975)

    Google Scholar 

  7. P.M. Walker, G.D. Dracoulis, Nature 399, 35 (1999)

    Article  ADS  CAS  Google Scholar 

  8. P. Moller, A.J. Sierk, R. Bengtsson, H. Sagawa, T. Ichikawa, Atom. Data Nucl. Data Tables 98, 149 (2012)

    Article  ADS  Google Scholar 

  9. B. Singh, R. Zywina, R.B. Firestone, Nucl. Data Sheets 97, 241 (2002)

    Article  ADS  CAS  Google Scholar 

  10. P.M. Walker, F.R. Xu, Phys. Scr. 91, 013010 (2016)

    Article  ADS  Google Scholar 

  11. F.G. Kondev, G.D. Dracoulis, T. Kibedi, Atom. Data Nucl. Data Tables 103–104, 50 (2015)

    Article  ADS  Google Scholar 

  12. P. Van Isacker, J. Phys. Conf. Ser. 322, 012003 (2011)

    Article  Google Scholar 

  13. B. Maheshwari, K. Nomura, Symmetry 14, 2680 (2022)

    Article  ADS  Google Scholar 

  14. P.M. Walker, J.J. Carroll, Phys. Today 58, 39 (2005)

    Article  CAS  Google Scholar 

  15. P.M. Walker, Z. Podolyak, Phys. Scr. 95, 044004 (2020)

    Article  ADS  CAS  Google Scholar 

  16. G.D. Dracoulis, P.M. Walker, F.G. Kondev, Rep. Progr. Phys. 79, 076301 (2016)

    Article  ADS  CAS  Google Scholar 

  17. P.M. Walker, Phys. Scr. 92, 054001 (2017)

    Article  ADS  Google Scholar 

  18. J. Williams et al., Phys. Rev. C 108, L051305 (2023)

    Article  ADS  CAS  Google Scholar 

  19. Y. Sun et al., Phys. Lett. B 589, 83 (2004)

    Article  ADS  CAS  Google Scholar 

  20. B. Maheshwari, H.A. Kassim, N. Yusof, A.K. Jain, Nucl. Phys. A 992, 121619 (2019)

    Article  CAS  Google Scholar 

  21. S. Kraemer et al., Nature 617, 706 (2023)

    Article  ADS  CAS  PubMed  Google Scholar 

  22. A.K. Jain, R.K. Sheline, P.C. Sood, K. Jain, Rev. Mod. Phys. 62, 393 (1990)

    Article  ADS  CAS  Google Scholar 

  23. I. Hamamoto, Phys. Rep. 10, 63 (1974)

    Article  ADS  CAS  Google Scholar 

  24. P. Van Isacker, M. Rejmund, Phys. Rev. Res. 4, L022031 (2022)

    Article  Google Scholar 

  25. A.P. Byrne, R. Musseler, H. Hubel, M. Murzel, K. Theine, W. Schmitz, K.H. Maier, H. Kluge, H. Grawe, H. Haas, Phys. Lett. B 217, 38 (1989)

    Article  ADS  CAS  Google Scholar 

  26. D. Horn, O. Hausser, T. Faestermann, A.B. McDonald, T.K. Alexander, J.R. Beene, C.J. Herrlander, Phys. Rev. Lett. 39, 389 (1977)

    Article  ADS  CAS  Google Scholar 

  27. D. Horn, O. Hausser, B. Hass, T.K. Alexander, T. Faestermann, H.R. Andrews, D. Ward, Nucl. Phys. A 317, 520 (1979)

    Article  ADS  Google Scholar 

  28. G.D. Dracoulis, P.M. Davidson, A.P. Byrne, B. Fabricius, T. Kibedi, A.M. Baxter, A.E. Stuchbery, A.R. Poletti, K.J. Schiffer, Phys. Lett. B 246, 31 (1990)

    Article  ADS  CAS  Google Scholar 

  29. G.D. Dracoulis, G.J. Lane, A.P. Byrne, P.M. Davidson, T. Kibedi, P.H. Nieminen, H. Watanabe, A.N. Wilson, H.L. Liu, F.R. Xu, Phys. Rev. C 80, 054320 (2009)

    Article  ADS  Google Scholar 

  30. C.B. Li et al., Phys. Rev. C 101, 044313 (2020)

    Article  ADS  CAS  Google Scholar 

  31. S. Andre, C. Foin, V. Barci, D. Barneoud, J. Genevey, A. Gizon, Z. Phys. A 337, 349 (1990)

    ADS  CAS  Google Scholar 

  32. C. Foin, A. Gizon, D. Barnéoud et al., Eur. Phys. J. A 8, 451 (2000)

    Article  ADS  CAS  Google Scholar 

  33. P. Eberhardt, J. Geiss, C. Lang, W. Herr, E. Merz, Z. Naturforsch. 10a, 796 (1955)

    Article  ADS  CAS  Google Scholar 

  34. B. Lehnert, M. Hult, G. Lutter, K. Zuber, Phys. Rev. C 95, 044306 (2017)

    Article  ADS  Google Scholar 

  35. E.R. Bauminger, S.G. Cohen, Phys. Rev. 110, 953 (1958)

    Article  ADS  CAS  Google Scholar 

  36. P. Eberhardt, P. Signer, W. Herr, E. Merz, Z. Naturforsch. 13a, 1004 (1958); ORNL-tr-2226 (1970)

  37. L. G. Miller, M. K. Brice, M. S. Moore, IDO-16505, p. 58 (1958)

  38. K. Sakamoto, Nucl. Phys. A 103, 134 (1967)

    Article  ADS  CAS  Google Scholar 

  39. G. Ardisson, Radiochem. Radioanal. Lett. 29, 7 (1977)

    CAS  Google Scholar 

  40. E.B. Norman, Phys. Rev. C 24, 2334 (1981)

    Article  ADS  CAS  Google Scholar 

  41. J.B. Cumming, D.E. Alburger, Phys. Rev. C 31, 1494 (1985)

    Article  ADS  CAS  Google Scholar 

  42. M.L. Bissell, K. Baczynska, J. Billowes, P. Campbell, B. Cheal, T. Eronen, D.H. Forest, M.D. Gardner, I.D. Moore, B. Tordoff, G. Tungate, J. Aysto, Phys. Rev. C 74, 047301 (2006)

    Article  ADS  Google Scholar 

  43. M. Hult, J. Gasparro, G. Marissens, P. Lindahl, U. Watjen, P.N. Johnston, C. Wagemans, M. Kohler, Phys. Rev. C 74, 054311 (2006)

    Article  ADS  Google Scholar 

  44. M. Hult, J.S.E. Wieslander, G. Marissens, J. Gasparro, U. Watjen, M. Misiaszek, Appl. Radiat. Isot. 67, 918 (2009)

    Article  CAS  PubMed  Google Scholar 

  45. D.A. Nesterenko, K. Blaum, P. Delahaye, S. Eliseev, T. Eronen, P. Filianin, Z. Ge, M. Hukkanen, A. Kankainen, Yu.N. Novikov, A.V. Popov, A. Raggio, M. Stryjczyk, V. Virtanen, Phys. Rev. C 106, 024310 (2022)

    Article  ADS  CAS  Google Scholar 

  46. I.J. Arnquist et al., Phys. Rev. Lett. 131, 152501 (2023)

    Article  ADS  CAS  PubMed  Google Scholar 

  47. H.J. Mang, Ann. Rev. Nucl. Sci. 14, 1 (1964)

    Article  ADS  CAS  Google Scholar 

  48. S. Hofmann, W. Reisdorf, G. Munzenberg, F.P. Hessberger, J.R.H. Schneider, P. Armbruster, Z. Phys. A 305, 111 (1982)

    Article  ADS  CAS  Google Scholar 

  49. K.P. Jackson, C.U. Cardinal, H.C. Evans, N.A. Jelley, J. Cerny, Phys. Lett. B 33, 281 (1970)

    Article  ADS  CAS  Google Scholar 

  50. K. Rykaczewski et al., Phys. Rev. C 60, 011301 (1999)

    Article  ADS  Google Scholar 

  51. B. Barmore, A.T. Kruppa, W. Nazarewicz, T. Vertse, Phys. Rev. C 62, 054315 (2000)

    Article  ADS  Google Scholar 

  52. D. Seweryniak et al., Phys. Rev. Lett. 86, 1458 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  53. M. Karny et al., Phys. Lett. B 664, 52 (2008)

    Article  ADS  CAS  Google Scholar 

  54. P.J. Sellin, P.J. Woods, T. Davinson, N.J. Davis, K. Livingston, R.D. Page, A.C. Shotter, S. Hofmann, A.N. James, Phys. Rev. C 47, 1933 (1993)

    Article  ADS  CAS  Google Scholar 

  55. K.S. Toth, D.C. Sousa, P.A. Wilmarth, J.M. Nitschke, K.S. Vierinen, Phys. Rev. C 47, 1804 (1993)

    Article  ADS  CAS  Google Scholar 

  56. T.N. Ginter et al., Phys. Rev. C 61, 014308 (1999)

    Article  ADS  Google Scholar 

  57. T.N. Ginter et al., Phys. Rev. C 68, 034330 (2003)

    Article  ADS  Google Scholar 

  58. C.R. Bingham et al., Phys. Rev. C 59, R2984 (1999)

    Article  ADS  CAS  Google Scholar 

  59. R.S. Lubna et al., Phys. Rev. C 108, 014329 (2023)

    Article  ADS  CAS  Google Scholar 

  60. F.D.S. Butement, Proc. Phys. Soc. A 65, 254 (1951)

    Article  ADS  Google Scholar 

  61. G.W. Misch, T.M. Sprouse, M.R. Mumpower, Astrophys. J. Lett. 913, L2 (2021)

    Article  ADS  CAS  Google Scholar 

  62. G. Lotay et al., Phys. Rev. Lett. 128, 042701 (2022)

    Article  ADS  CAS  PubMed  Google Scholar 

  63. N. Colonna et al., Eur. Phys. J. A 56, 48 (2020)

    Article  ADS  CAS  Google Scholar 

  64. D.A. Nesterenko et al., Phys. Lett. B 808, 135642 (2020)

    Article  CAS  Google Scholar 

  65. N.L. Gjorup et al., Z. Phys. A Atom. Nuclei 337, 353 (1990)

    Article  ADS  Google Scholar 

  66. K. Jain, O. Burglin, G.D. Dracoulis, B. Fabricius, N. Rowley, P.M. Walker, Nucl. Phys. A 591, 61 (1995)

    Article  ADS  Google Scholar 

  67. M. Pospelov, S. Rajendran, H. Ramani, Phys. Rev. D 101, 055001 (2020)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

BM gratefully acknowledges the financial support from the Croatian Science Foundation and the École Polytechnique Fédérale de Lausanne, under the project TTP-2018-07-3554 “Exotic Nuclear Structure and Dynamics”, with funds of the Croatian-Swiss Research Programme. AKJ acknowledges the financial support received from S.E.R.B. (Govt. of India) in the form of a research grant (CRG/2020/770) at Amity University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhoomika Maheshwari.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maheshwari, B., Jain, A.K. Nuclear isomers at the extremes of their properties. Eur. Phys. J. Spec. Top. (2024). https://doi.org/10.1140/epjs/s11734-024-01133-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjs/s11734-024-01133-2

Navigation