Skip to main content
Log in

Reduction of MnO4 Ions and Selective Deposition of Sodium-Manganese Spinel Nanocrystals on the Surface of Hierarchically Structured Carbon Films in Aqueous Solutions

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The paper presents an investigation into the reduction and adsorption performance of hierarchically structured carbon films (HSCFs). The HSCFs are synthesized from glucose using a molten magnesium catalyst under a layer of molten salts during their reaction with an aqueous sodium permanganate solution at pH values from 1 to 14 and temperatures from 20 to 80 °C. By increasing the temperature from 20 to 80 °C, the reduction and adsorption of Mn (VII) on the HSCFs is accelerated by a factor of 150; moreover, the reaction products are not temperature-dependent. According to Raman and photoelectron spectroscopy data, synthesis in the neutral and basic sodium permanganate solutions produces an “HSCF-sodium-manganese spinel” nanocomposite, the greater part (≈ 80%) of whose manganese is in a tetravalent state, while the remainder is in a trivalent state. The predominant precipitation of manganese spinel nanocrystals on the developed side of the carbon film may be related to the full disappearance of the sp hybridized carbon peak on the XPS spectra. It is shown for the first time that the reactivity of carbon varies with its valence state. Of the three hybridized states of carbon, sp hybridized carbon is demonstrated to have the highest reactivity. It is confirmed that 100% reduction and adsorption from 0.01 to 0.1 M sodium permanganate solutions occur in neutral and basic media. The adsorption capacity of the hierarchically structured carbon film interacting with 0.1 M sodium permanganate solution is more than 450 mg/g, representing a high adsorption performance as compared to other carbon nanomaterials investigated earlier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. R.A. Wuan, F.E. Okieimen, J.A. Imborvungu, Removal of heavy metals from a contaminated soil using organic chelating acids. Int. J. Environ. Sci. Technol.J. Environ. Sci. Technol. 7, 485–496 (2010). https://doi.org/10.1007/BF03326158

    Article  Google Scholar 

  2. L. Li, Y. Li, C. Yang, Chemical filtration of Cr (VI) with electrospun chitosan nanofiber membranes. Carbohydr. Polym. 140, 299–307 (2016). https://doi.org/10.1016/j.carbpol.2015.12.067

    Article  CAS  PubMed  Google Scholar 

  3. F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review. J. Environ. Manage. 92, 407–418 (2011)

    Article  CAS  PubMed  Google Scholar 

  4. S. Ghobadi, B. Samiey, A. Ghanbari, Adsorption and reduction coupling of permanganate on MoS2: water treatment and metal ion separation. J. Solid State Chem. 304, 122588 (2021)

    Article  CAS  Google Scholar 

  5. S. Ghobadi, B. Samiey, E. Esmaili, C.H. Cheng, Comparison of kinetics of adsorption of permanganate on Co-Al-layered double hydroxide and MoS2 nanocompounds. Acta Chim. Slov. 70, 44–58 (2023)

    Article  CAS  PubMed  Google Scholar 

  6. F. Chen, M. Hong, W. You, Ch. Li, Y. Yu, Simultaneous efficient adsorption of Pb2+ and MnO4 ions by MCM-41 functionalized with amine and nitrilotriacetic acid anhydride. Appl. Surf. Sci. 357, 856–865 (2015)

    Article  ADS  CAS  Google Scholar 

  7. I.A. Ahmed, M. Badawi, A. Bonilla-Petriciolet, E.C. Lima, M.K. Seliem, M. Mobarak, Insights into the Mn(VII) and Cr(VI) adsorption mechanisms on purified diatomite/MCM-41 composite: experimental study and statistical physics analysis. Front. Chem. 9, 814431 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  8. S.A. Bani-Atta, Potassium permanganate dye removal from synthetic wastewater using a novel, low-cost adsorbent, modifed from the powder of Foeniculum vulgare seeds. Sci. Rep. 12, 4547 (2022). https://doi.org/10.1038/s41598-022-08543-z

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. R.K. Verma, R. Kapoor, S.K. Gupta, R.R. Chaudhari, An efficient technique for removal of K+ and MnO4- ions through adsorption in aqueous solution by using activated charcoal. Pharm. Chem. J. 1(2), 20–25 (2014)

    CAS  Google Scholar 

  10. T.C. Egbosiuba, A.S. Abdulkareem, A.S. Kovo, E.A. Afolabi, J.O. Tijani, W.D. Roos, Enhanced adsorption of As(V) and Mn (VII) from industrial wastewater using multi-walled carbon nanotubes and carboxylated multi-walled carbon nanotubes. Chemosphere 254, 126780 (2020)

    Article  CAS  PubMed  Google Scholar 

  11. N. Kumar, J.R. Rodriguez, V.G. Pol, A. Sen, Facile synthesis of 2D graphene oxide sheet enveloping ultrafine 1D LiMn2O4 as interconnected framework to enhance cathodic property for Li-ion battery. Appl. Surface Sci. 463, 132–140 (2019)

    Article  ADS  CAS  Google Scholar 

  12. L. Chen, D. Li, X. Zheng, L. Chen, Y. Zhang, Z. Liang, Integrated nanocomposite of LiMn2O4/graphene/carbon nanotubes with pseudocapacitive properties as superior cathode for aqueous hybrid capacitors. J. Electroanal. Chem. 842, 74–81 (2019)

    Article  CAS  Google Scholar 

  13. R. Kumar, A. Soam, Synthesis and characterization of sucrose derived carbon/MnO2 nanocomposite. Mater. Today: Proc. 35, 76–78 (2021)

    CAS  Google Scholar 

  14. R. Tabassam, F. Alvi, N. Aslam, R. Raza, L.S. Saifur-Rehman et al., Electrochemical investigation of LiMn2O4/asphalt and LiMn2O4/bituminous coal based cathode composites for efficient lithium-ion battery. Mater. Lett. 302, 130275 (2021)

    Article  CAS  Google Scholar 

  15. N. Kano, M. Pang, Y. Deng, H. Imaizumi, Adsorption of rare earth elements (REEs) onto activated carbon modified with potassium permanganate (KMnO4). J. Appl. Sol. Chem. Model. 6, 51–61 (2017)

    Article  CAS  Google Scholar 

  16. Z. Gao, S. Xu, L. Li, G. Yan, W. Yang, C. Wu, I.D. Gates, On the adsorption of elemental mercury on single-atom TM (TM = V, Cr, Mn, Co) decorated graphene substrates. Appl. Surface Sci. 516, 146037 (2020)

    Article  CAS  Google Scholar 

  17. S. Mopoung, T. Bunterm, KMnO4 modified carbon prepared from waste of pineapple leaf fiber production processing for removal of ferric ion from aqueous solution. Am. J. Appl. Sci. 13(6), 814–826 (2016)

    Article  CAS  Google Scholar 

  18. J. Zhang, Phenol removal from water with potassium permanganate modified granular activated carbon. J. Environ. Prot. 4(5), 411–417 (2013). https://doi.org/10.4236/jep.2013.45049

    Article  CAS  Google Scholar 

  19. M.M. Kadam, K.B. Dhopte, N. Jha, V.G. Gaikar, P.R. Nemade, Synthesis, characterization and application of c-MnO2/graphene oxide for the selective aerobic oxidation of benzyl alcohols to corresponding carbonyl compounds. New J. Chem. 40, 1436 (2016)

    Article  CAS  Google Scholar 

  20. T. Prasankumar, J. Vigneshwaran, M. Bagavathi, S. Jose, Expeditious and eco-friendly synthesis of spinel LiMn2O4 and its potential for fabrication of supercapacitors. J. Alloys Compd. 834, 155060 (2020)

    Article  CAS  Google Scholar 

  21. D.B. Freitas Neto, F.F.S. Xavier, E.Y. Matsubara, R. Parmar, R. Gunnella, J.M. Rosolen, The role of nanoparticle concentration and CNT coating in high-performance polymer-free micro/nanostructured carbon nanotube-nanoparticle composite electrode for Li intercalation. J. Electroanal. Chem. 858, 113826 (2020)

    Article  CAS  Google Scholar 

  22. H.J. Yue, X.K. Huang, D.P. Lv, Y. Yang, Hydrothermal synthesis of LiMn2O4/C composite as a cathode for rechargeable lithium-ion battery with excellent rate capability. Electrochim. Acta 54, 5363–5367 (2009)

    Article  CAS  Google Scholar 

  23. V.A. Yolshina, L.A. Yolshina, V.A. Elterman, E.G. Vovkotrub, A.A. Shatunova, V.I. Pryakhina, N.A. Khlebnikov, N.V. Tarakina, Synthesis of and characterization of freestanding, high-hierarchically structured graphene-nanodiamond films. Mater. Design 135, 343–352 (2017)

    Article  CAS  Google Scholar 

  24. L.A. Yolshina, V.A. Yolshina, S.V. Pershina, V.I. Pryakhina, Study of thermal stability of hierarchical structured carbon composite flakes. Diam. Relat. Mater. 119, 108556 (2021)

    Article  ADS  CAS  Google Scholar 

  25. V.A. Yolshina, L.A. Yolshina, V.I. Pryakhina, SEM and XPS study of Cr6+ removal from wastewater via reduction and adsorption by hierarchically structured carbon composite in neutral media. J. Inorg. Organomet. Polym. Mater. 31(8), 3624–3635 (2021)

    Article  CAS  Google Scholar 

  26. V.A. Dorogova, L.A. Elshina, Synthesis of hybrid carbon nanocomposites with potassium spinel KMn2O4 at low temperatures in a neutral medium. Russ. Metall. (Metally) 8, 906–913 (2022)

    Google Scholar 

  27. L.A. Elshina, V.A. Elshina, Synthesis of a nanocrystalline α-Al2O3 powder in molten halides in the temperature range 700–800°C. Russ. Metall. (Metally) 2, 138–141 (2020)

    Article  ADS  Google Scholar 

  28. A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, U. Poschl, Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43, 1731–1742 (2005)

    Article  CAS  Google Scholar 

  29. R. Trócoli, A. Morata, C. Erinmwingbovo, F. La Mantia, A. Tarancón, Self-discharge in Li-ion aqueous batteries: a case study on LiMn2O4. Electrochim. Acta 373, 137847 (2021)

    Article  Google Scholar 

  30. P. Taddesse, H. Gebrekiros, G. Semu, M. Duressa, Y.C. Chemeda, N. Murali, K. Vijaya Babu, Investigation of structural, vibrational spectroscopic and properties study of LiMn2O4 and LiMn1.9Cu0.05Fe0.05O4 cathode materials. Res. Mater. 12, 100224 (2021)

    CAS  Google Scholar 

  31. M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 257, 2717 (2011). https://doi.org/10.1016/j.apsusc.2010.10.051

    Article  ADS  CAS  Google Scholar 

Download references

Funding

This work was partially supported by Russian Presidential Scholarship [scholarship no. SP-6070.2021.1] and partially in accordance with the budget plan of The Institute of High Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences on the topic 122020100210-9 and performed in the Institute of High-Temperature Electrochemistry of the Ural Branch of the RAS using the equipment of the Shared Access Center Composition of Compounds and the Ural Center for Shared Used “Modern Nanotechnologies” of Ural Federal University (Reg. 2968).

Author information

Authors and Affiliations

Authors

Contributions

VAD Investigation: Synthesis of carbon composite and Mn7+ interaction, Software, LAY Supervision, Conceptualization, Methodology, Writing, VIP Formal analysis, Resources, X-Ray spectroscopy. EGV Investigation: Raman spectroscopy.

Corresponding author

Correspondence to L. A. Yolshina.

Ethics declarations

Competing interests

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorogova, V.A., Yolshina, L.A., Pryakhina, V.I. et al. Reduction of MnO4 Ions and Selective Deposition of Sodium-Manganese Spinel Nanocrystals on the Surface of Hierarchically Structured Carbon Films in Aqueous Solutions. J Inorg Organomet Polym (2024). https://doi.org/10.1007/s10904-024-03017-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-024-03017-3

Keywords

Navigation