Skip to main content
Log in

Designing High-Porosity Porous Structures with Complex Geometries for Enhanced Thermal Conductivity Using Selective Laser Melting and Heat Treatment

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Rapid advancements in the aerospace industry necessitate the development of unified, lightweight and thermally conductive structures. Integrating complex geometries, including bionic and porous structures, is paramount in thermally conductive structures to attain improved thermal conductivity. The design of two high-porosity porous lattice structures was inspired by pomelo peel structure, using Voronoi parametric design. By combining characteristic elements of two high-porostructuressity porous lattice structures designed, a novel high-porosity porous gradient structure is created. This structure is based on gradient design. Utilizing selective laser melting (SLM), fabrication comprises three . Steady-state thermal characteristics are evaluated via finite element analysis (FEA). The experimental thermal conductivity measurements correlate well with simulation results, validating the sequence of K_L as the highest, followed by D_K_L and then D_L. Heat treatment significantly improves thermal conductivity, enhancing the base material by about 45.6% and porous structured samples by approximately 43.7%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Y.M. Xiao, Y.Q. Yang, S.B. Wu, J. Chen, D. Wang, C.H. Song, Acta Metall. Sin.-Engl. Lett. 35, 486 (2022)

    CAS  Google Scholar 

  2. L.E. Murr, J. Mater. Sci. Technol. 32, 987 (2016)

    Article  Google Scholar 

  3. X.J. Wang, S.Q. Xu, S.W. Zhou, W. Xu, M. Leary, P. Choong, M. Qian, M. Brandt, Y.M. Xie, Biomaterials 83, 127 (2016)

    Article  CAS  PubMed  Google Scholar 

  4. B. Blakey-Milner, P. Gradl, G. Snedden, M. Brooks, J. Pitot, E. Lopez, M. Leary, F. Berto, A. du Plessis, Mater. Des. 209, 110008 (2021)

    Article  CAS  Google Scholar 

  5. G. Allevi, M. Cibeca, R. Fioretti, R. Marsili, R. Montanini, G. Rossi, Measurement 126, 252 (2018)

    Article  ADS  Google Scholar 

  6. L. Berrocal, R. Fernández, S. González, A. Periñán, S. Tudela, J. Vilanova, L. Rubio, J.M.M. Márquez, J. Guerrero, F. Lasagni, Prog. Addit. Manuf. 4, 83 (2019)

    Article  Google Scholar 

  7. X.J. Nie, Z. Chen, Y. Qi, H. Zhang, H.H. Zhu, Acta Metall. Sin.-Engl. Lett. 36, 1454 (2023)

    Google Scholar 

  8. T. Maconachie, M. Leary, B. Lozanovski, X. Zhang, M. Qian, O. Faruque, M. Brandt, Mater. Des. 183, 108137 (2019)

    Article  Google Scholar 

  9. A.G. Evans, J.W. Hutchinson, N.A. Fleck, M.F. Ashby, H.N.G. Wadley, Prog. Mater. Sci. 46, 309 (2001)

    Article  CAS  Google Scholar 

  10. M.G. Rashed, M. Ashraf, R. Mines, P.J. Hazell, Mater. Des. 95, 518 (2016)

    Article  CAS  Google Scholar 

  11. M.R. Karamooz Ravari, M. Kadkhodaei, M. Badrossamay, R. Rezaei, Int. J. Mech. Sci. 88, 154 (2014)

    Article  Google Scholar 

  12. K.J. Lin, K.M. Hu, D.D. Gu, Opt. Laser Technol. 115, 9 (2019)

    Article  ADS  CAS  Google Scholar 

  13. C. Dawson, J.F.V. Vincent, G. Jeronimidis, G. Rice, P. Forshaw, J. Theor. Biol. 199, 291 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. F.M. Scott, Nature 210, 1015 (1966)

    Article  ADS  Google Scholar 

  15. M. Thielen, C.N. Schmitt, S. Eckert, T. Speck, R. Seidel, Bioinspir. Biomim. 8, 025001 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. A. Bührig-Polaczek, C. Fleck, T. Speck, P. Schüler, S.F. Fischer, M. Caliaro, M. Thielen, Bioinspir. Biomim. 11, 045002 (2016)

    Article  ADS  PubMed  Google Scholar 

  17. L.C. Long, Z.K. Wang, K. Chen, J. Wood Sci. 61, 569 (2015)

    Article  CAS  Google Scholar 

  18. H. Zhao, Y. Han, C. Pan, D. Yang, H. Wang, T. Wang, X. Zeng, P. Su, Micromachines. 12 (2021)

  19. S.J. Yue, Z.G. Xu, Int. Commun. Heat Mass Transf. 142, 106640 (2023)

    Article  Google Scholar 

  20. F. Muzaki, J. Limanza, G.N. Surname, Numerical simulation and analysis of functionally graded materials and it’s potentials for battery application: a review. In: Paper presented at the 3rd international Symposium on Material and Electrical Engineering Conference (ISMEE), (2021), pp. 249–252

  21. L. Zhao, L.B. Song, J.G. Santos Macías, Y.X. Zhu, M.S. Huang, A. Simar, Z.H. Li, Addit. Manuf. 56, 102914 (2022)

    CAS  Google Scholar 

  22. N. Takata, H. Kodaira, K. Sekizawa, A. Suzuki, M. Kobashi, Mater. Sci. Eng. A 704, 218 (2017)

    Article  CAS  Google Scholar 

  23. R.R.J. Sélo, S. Catchpole-Smith, I. Maskery, I.A. Ashcroft, C.J. Tuck, Addit. Manuf. 34, 101214 (2020)

    Google Scholar 

  24. C. Butler, S. Babu, R. Lundy, R. O’Reilly Meehan, J. Punch, N. Jeffers, Mater. Charact. 173, 110945 (2021)

  25. Y.R. Liang, T.J. Ma, T.N. Jin, B. Zhang, L. Yang, W.H. Yin, H.G. Fu, Mater. Sci. Technol. 39, 1223 (2023)

    Article  CAS  Google Scholar 

  26. B.S. Yang, W.H. Chen, R.L. Xin, X.H. Zhou, D. Tan, C. Ding, Y. Wu, L. Yin, C.Y. Chen, S. Wang, Z.L. Yu, J.T. Pham, S. Liu, Y.F. Lei, L.J. Xue, J. Bionic Eng. 19, 448 (2022)

    Article  Google Scholar 

  27. D. Almonti, N. Ucciardello, Materials (2019)

  28. Y. Du, H.X. Liang, D.Q. Xie, N. Mao, J.F. Zhao, Z.J. Tian, C.J. Wang, L.D. Shen, Mater. Chem. Phys. 239, 121968 (2020)

    CAS  Google Scholar 

  29. H.J. Xu, Z.B. Xing, F.Q. Wang, Z.M. Cheng, Chem. Eng. Sci. 195, 462 (2019)

    Article  CAS  Google Scholar 

  30. B.O. Aduda, J. Mater. Sci. 31, 6441 (1996)

    Article  ADS  CAS  Google Scholar 

  31. M. Laleh, E. Sadeghi, R.I. Revilla, Q. Chao, N. Haghdadi, A.E. Hughes, W. Xu, I.D. Graeve, M. Qian, I. Gibson, M.Y. Tan 2023 Prog. Mater. Sci. 133

  32. N.T. Aboulkhair, C. Tuck, I. Ashcroft, I. Maskery, N.M. Everitt, Metall. Mater. Trans. A 46, 3337 (2015)

    Article  CAS  Google Scholar 

  33. EOS GmbH-Electro Optical Systems, EOS Aluminium AlSi10Mg. (Germany, 2014)

  34. American Society for Testing and Materials, E1225–13. (United States, 2013)

  35. O. Al-Ketan, R. Rowshan, R.K. Abu Al-Rub, Addit. Manuf. 19, 167 (2018)

    Google Scholar 

  36. H.X. Wang, X. Lin, N. Kang, Z.H. Qin, S.Q. Shi, J.C. Li, W.D. Huang, Acta Metall. Sin.-Engl. Lett. 35, 375 (2022)

    Google Scholar 

  37. B. Liu, B.Q. Li, Z. Li, Results Phys. 12, 982 (2019)

    Article  ADS  Google Scholar 

  38. X.H. Gu, J.X. Zhang, X.L. Fan, L.C. Zhang, Acta Metall. Sin.-Engl. Lett. 33, 327 (2020)

    CAS  Google Scholar 

  39. T. Rubben, R.I. Revilla, I. De Graeve, Corros. Sci. 147, 406 (2019)

    Article  CAS  Google Scholar 

  40. M. Wang, B. Song, Q. Wei, Y. Zhang, Y. Shi, Mater. Sci. Eng. A 739, 463 (2019)

    Article  CAS  Google Scholar 

  41. J.J. Shea, I.E.E.E. Electr, Insul. Mag. 21, 56 (2005)

    Google Scholar 

  42. A. Azizi, F. Hejripour, J.A. Goodman, P.A. Kulkarni, X. Chen, G. Zhou, S.N. Schiffres, Rapid. Prototyp. J 29, 1109 (2023)

    Article  Google Scholar 

  43. X. Zhang, M.H. Zhang, C.P. Zhang, T. Zhou, X. Wu, X.Z. Yue, Mater. (basel) 15, 8046 (2022)

Download references

Acknowledgements

The authors are grateful for funding of the Shanghai Sailing Program (No. 19YF1434300) and the Shanghai Engineering Research Center of High-Performance Medical Device Materials (No. 20DZ2255500) and the National Natural Science Foundation of China (No. 11947137).

Author information

Authors and Affiliations

Authors

Contributions

H.L. Tang was involved in conceptualization, methodology, investigation, software, writing—original draft and validation. X. Zhang was responsible for conceptualization, investigation, validation and data curation. C.P. Zhang took part in data curation, resources, and reviewing and editing. T. Zhou participated in methodology, experiments design, and reviewing and editing. S.Y. Guo contributed to validation and resources. G.P. Xu gave academic advice and guidance on experimental design. R.S. Zhao carried out statistical analysis of experimental results. B.Y. Hur  was involved in data analysis. X.Z. Yue assisted with methodology, visualization, formal analysis, reviewing and editing, and data curation.

Corresponding author

Correspondence to Xuezheng Yue.

Ethics declarations

Conflict of interest

The authors state that there are no conflicts of interest to disclose.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, H., Zhang, X., Zhang, C. et al. Designing High-Porosity Porous Structures with Complex Geometries for Enhanced Thermal Conductivity Using Selective Laser Melting and Heat Treatment. Acta Metall. Sin. (Engl. Lett.) (2024). https://doi.org/10.1007/s40195-024-01672-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40195-024-01672-6

Keywords

Navigation