Skip to main content
Log in

Preparation of UiO-66-type adsorbents for the separation of SO2 from flue gas

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

There is an urgent need to address sulfur dioxide (SO2) from the burning of fossil fuels, which poses a serious hazard to the surrounding environment due to its emission. In this work, UiO-66-type metal–organic framework materials (MOFs) were prepared by hydrothermal method and applied to flue gas desulfurization. Through characterization analysis, it was found that UiO-66 sample had high crystallinity and good thermal stability. Besides, UiO-66 sample had a large specific surface area (1423 m2/g) and a large pore volume (0.69 cm3/g). In the desulfurization experiments of SO2/CO2/O2/N2 gas mixture (0.3/10.0/5.5/84.2 vol.%), UiO-66 had a breakthrough time of 137.6 min/g for SO2, the high selectivity of SO2/CO2 (36.0), and strong acid resistance. Besides, the adsorption thermodynamic analysis can confirm that the adsorption process of UiO-66 for SO2 was a combination of physical adsorption and chemical adsorption. At 1.0 bar and 298 K, the adsorption capacity of SO2 on UiO-66 reached 8.12 mmol/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the paper and its supplementary materials.

References

  1. Kumar, L., Jana, S., Datta, D.: Application of response surface methodology to absorptive separation of SO2 from its mixture with air using marble waste. Chem. Eng. Commun. 207, 458–473 (2020). https://doi.org/10.1080/00986445.2019.1605358

    Article  CAS  Google Scholar 

  2. Masoomi, I., Kamata, H., Yukimura, A., Ohtsubo, K., Schmid, M., Scheffknecht, G.: Investigation on the behavior of mercury across the flue gas treatment of coal combustion power plants using a lab-scale firing system. Fuel Process. Technol. 201, 106340 (2020). https://doi.org/10.1016/j.fuproc.2020.106340

    Article  CAS  Google Scholar 

  3. Sadare, O., Daramola, M.O.: Adsorptive removal of dibenzothiophene from petroleum distillates using pomegranate leaf (Punica granatum) powder as a greener adsorbent. Chem. Eng. Commun. 206, 333–345 (2019). https://doi.org/10.1080/00986445.2018.1488691

    Article  CAS  Google Scholar 

  4. Wang, S., Wu, Y., Li, X., Zhang, W., Ma, H.: Trace SO2 gas capture in stable 3D viologen ionic porous organic framework microsphere. ACS Appl. Mater. Interfaces 15, 30312–30319 (2023). https://doi.org/10.1021/acsami.3c05288

    Article  CAS  PubMed  Google Scholar 

  5. Yao, J., Zhao, Z., Yu, L., Huang, J., Shen, S., Zhao, S., Wu, Y., Tian, X., Wang, J., Xia, Q.: Boosting trace SO2 adsorption and separation performance by the modulation of the SBU metal component of iron-based bimetal MOFs. J. Mater. Chem. A 11, 14728–14737 (2023). https://doi.org/10.1039/d3ta02223d

    Article  CAS  Google Scholar 

  6. Zhang, Z., Yang, B., Wu, Y., Zhang, W., Ma, H.: Post modification of Oxo-clusters in robust Zirconium-based metal organic framework for durable SO2 capture from flue gas. Sep. Purif. Technol. 276, 119349 (2021). https://doi.org/10.1016/j.seppur.2021.119349

    Article  CAS  Google Scholar 

  7. Zhang, J., Zhang, J., Li, M., Wu, Z., Dai, S., Huang, K.: Solvent-free and one-pot synthesis of ultramicroporous carbons with ultrahigh nitrogen contents for sulfur dioxide capture. Chem. Eng. J. 391, 123579 (2020). https://doi.org/10.1016/j.cej.2019.123579

    Article  CAS  Google Scholar 

  8. Ahmad, M., Petersd, T., Konnertz, N., Visser, T., Tellez, C., Coronas, J., Fila, V., de Vos, W., Benes, N.: High-pressure CO2/CH4 separation of Zr-MOFs based mixed matrix membranes. Sep. Purif. Technol. 230, 115858 (2020). https://doi.org/10.1016/j.seppur.2019.115858

    Article  CAS  Google Scholar 

  9. Chen, M., Wei, S., Wu, J., Li, J., Fu, B., Zhu, X.: Sulfur doped Bi-MOF with adjustable band gap for tetracycline removal under visible light. Colloids Surf. 664, 131186 (2023). https://doi.org/10.1016/j.colsurfa.2023.131186

    Article  CAS  Google Scholar 

  10. Zhang, D., Song, H., Yuan, D.: Synthesis of highly dispersed phosphotungstic acid encapsulated in MIL-100(Fe) catalyst and its performance in heterogeneous oxidative desulfurization. Chem. Eng. Commun. 206, 1706–1714 (2019). https://doi.org/10.1080/00986445.2019.1573167

    Article  CAS  Google Scholar 

  11. Abedini, R., Mosayebi, A., Mokhtari, M.: Improved CO2 separation of azide cross-linked PMP mixed matrix membrane embedded by nano-CuBTC metal organic framework. Process. Saf. Environ. 114, 229–239 (2018). https://doi.org/10.1016/j.psep.2017.12.025

    Article  CAS  Google Scholar 

  12. Li, L., Lin, R., Krishna, R., Wang, X., Li, B., Wu, H., Li, J., Wei, Z., Chen, B.: Efficient separation of ethylene from acetylene/ethylene mixtures by a flexible-robust metal-organic framework. J. Mater. Chem. A 5, 18984–18988 (2017). https://doi.org/10.1039/c7ta05598f

    Article  CAS  Google Scholar 

  13. Smith, G., Eyley, J., Han, X., Zhang, X., Li, J., Jacques, N., Godfrey, H., Argent, S., McPherson, L., Teat, S., Cheng, Y., Frogley, M., Cinque, G., Day, J., Tang, C., Easun, T., Rudic, S., Ramirez-Cuesta, A., Yang, S., Schroder, M.: Reversible coordinative binding and separation of sulfur dioxide in a robust metal-organic framework with open copper sites. Nat. Mater. 18, 1358–1365 (2019). https://doi.org/10.1038/s41563-019-0495-0

    Article  CAS  PubMed  Google Scholar 

  14. Tan, K., Zuluaga, S., Wang, H., Canepa, P., Soliman, K., Cure, J., Li, J., Thonhauser, T., Chabal, Y.: Interaction of acid gases SO2 and NO2 with coordinatively unsaturated metal organic frameworks: M-MOF-74 (M = Zn, Mg, Ni, Co). Chem. Mater. 29, 4227–4235 (2017). https://doi.org/10.1021/acs.chemmater.7b00005

    Article  CAS  Google Scholar 

  15. Wei, S., Wu, J., Chen, P., Fu, B., Zhu, X., Chen, M.: Integration of phosphotungstic acid into zeolitic imidazole framework-67 for efficient methylene blue adsorption. ACS Omega 7, 9900–9908 (2022). https://doi.org/10.1021/acsomega.2c00377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cui, X., Yang, Q., Yang, L., Krishna, R., Zhang, Z., Bao, Z., Wu, H., Ren, Q., Zhou, W., Chen, B.: Ultrahigh and selective SO2 uptake in inorganic anion-pillared hybrid porous materials. Adv. Mater. 29, 1606929 (2017). https://doi.org/10.1002/adma.201606929

    Article  CAS  Google Scholar 

  17. Cavka, J., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S., Lillerud, K.: A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850–13851 (2008). https://doi.org/10.1021/ja8057953

    Article  CAS  PubMed  Google Scholar 

  18. Vo, T., Nguyen, V., Quang, D., Park, B., Kim, J.: Formation of structural defects within UiO-66(Zr)-(OH)2 framework for enhanced CO2 adsorption using a microwave-assisted continuous-flow tubular reactor. Microporous Mesoporous Mater. 312, 110746 (2020). https://doi.org/10.1016/j.micromeso.2020.110746

    Article  CAS  Google Scholar 

  19. Zhao, B., Yuan, L., Wang, Y., Duan, T., Shi, W.: Carboxylated UiO-66 tailored for U(VI) and Eu(III) trapping: from batch adsorption to dynamic column separation. ACS Appl. Mater. Interface 13, 16300–16308 (2021). https://doi.org/10.1021/acsami.1c00364

    Article  CAS  Google Scholar 

  20. Ma, Y., Li, A., Wang, C.: Experimental study on adsorption removal of SO2 in flue gas by defective UiO-66. Chem. Eng. J. 455, 140687 (2023). https://doi.org/10.1016/j.cej.2022.140687

    Article  CAS  Google Scholar 

  21. Liu, W., Xu, H., Liao, Y., Quan, Z., Li, S., Zhao, S., Qu, Z., Yan, N.: Recyclable CuS sorbent with large mercury adsorption capacity in the presence of SO2 from non-ferrous metal smelting flue gas. Fuel 235, 847–854 (2019). https://doi.org/10.1016/j.fuel.2018.08.062

    Article  CAS  Google Scholar 

  22. Gu, X., Pei, J., Shao, K., Wen, H., Li, B., Qian, G.: Chemically stable hafnium-based metal-organic framework for highly efficient C2H6/C2H4 separation under humid conditions. ACS Appl. Mater. Int. 13, 18792–18799 (2021). https://doi.org/10.1021/acsami.1c01810

    Article  CAS  Google Scholar 

  23. Sun, Y., Chen, M., Liu, H., Zhu, Y., Wang, D., Yan, M.: Adsorptive removal of dye and antibiotic from water with functionalized zirconium-based metal organic framework and graphene oxide composite nanomaterial UiO-66-(OH)2/GO. Appl. Surf. Sci. 525, 146614 (2020). https://doi.org/10.1016/j.apsusc.2020.146614

    Article  CAS  Google Scholar 

  24. Abid, H., Tian, H., Ang, H., Tade, M., Buckley, C., Wang, S.: Nanosize Zr-metal organic framework (UiO-66) for hydrogen and carbon dioxide storage. Chem. Eng. J. 187, 415–420 (2012). https://doi.org/10.1016/j.cej.2012.01.104

    Article  CAS  Google Scholar 

  25. Lin, S., Song, Z., Che, G., Ren, A., Li, P., Liu, C., Zhang, J.: Adsorption behavior of metal-organic frameworks for methylene blue from aqueous solution. Microporous Mesoporous Mater. 193, 27–34 (2014). https://doi.org/10.1016/j.micromeso.2014.03.004

    Article  CAS  Google Scholar 

  26. Zhang, Q., Yu, J., Cai, J., Song, R., Cui, Y., Yang, Y., Chen, B., Qian, G.: A porous metal-organic framework with -COOH groups for highly efficient pollutant removal. Chem. Commun. 50, 14455–14458 (2014). https://doi.org/10.1039/C4CC06648K

    Article  CAS  Google Scholar 

  27. Ma, Y., Li, A., Wang, C., Ge, X.: Preparation of HPW@UiO-66 catalyst with defects and its application in oxidative desulfurization. Chem. Eng. J. 404, 127062 (2021). https://doi.org/10.1016/j.cej.2020.127062

    Article  CAS  Google Scholar 

  28. Butova, V., Burachevskaya, O., Muratidi, M., Surzhikova, I., Zolotukhin, P., Medvedev, P., Gorban, I., Kuzharov, A., Soldatov, M.: Loading of the model amino acid leucine in UiO-66 and UiO-66-NH2: optimization of metal-organic framework carriers and evaluation of host-guest interactions. Inorg. Chem. 60, 5694–5703 (2021). https://doi.org/10.1021/acs.inorgchem.0c03751

    Article  CAS  PubMed  Google Scholar 

  29. Rada, Z., Abid, H., Sun, H., Shang, J., Li, J., He, Y., Liu, S., Wang, S.: Effects of -NO2 and -NH2 functional groups in mixed-linker Zr-based MOFs on gas adsorption of CO2 and CH4. Prog. Nat. Sci. Mater. 28, 160–167 (2018). https://doi.org/10.1016/j.pnsc.2018.01.016

    Article  CAS  Google Scholar 

  30. Han, Y., Liu, M., Li, K., Zuo, Y., Zhang, G., Zhang, Z., Guo, X.: Synthesis and application of high stability metal-organic framework UiO-66. Chin. J. Appl. Chem. 33, 367–378 (2016). https://doi.org/10.11944/j.issn.1000-0518.2016.04.150439

    Article  CAS  Google Scholar 

  31. Wang, J., Tong, M., Shan, C., Xiao, G., Liu, D., Yang, Q., Zhong, C.: Molecular simulation of effects of impurities on flue gas separation in metal-organic frameworks. Chem. J. Chin. Univ. 36, 316–324 (2015). https://doi.org/10.7503/cjcu20140802

    Article  CAS  Google Scholar 

  32. Yu, J., Balbuena, P.: How impurities affect CO2 capture in metal-organic frameworks modified with different functional groups. ACS Sustain. Chem. Eng. 3, 117–124 (2015). https://doi.org/10.1021/sc500607y

    Article  CAS  Google Scholar 

  33. Li, Z., Liao, F., Jiang, F., Liu, B., Ban, S., Chen, G., Sun, C., Xiao, P., Sun, Y.: Capture of H2S and SO2 from trace sulfur containing gas mixture by functionalized UiO-66(Zr) materials: a molecular simulation study. Fluid Phase Equilib. 427, 259–267 (2016). https://doi.org/10.1016/j.fluid.2016.07.020

    Article  CAS  Google Scholar 

  34. Zhou, X., Yu, Y., Chen, H., Yang, L., Qin, Y., Wang, T., Sun, W., Wang, C.: Porous materials screening and evaluation for deep desulfurization from dry air. Langmuir 36, 2775–2785 (2020). https://doi.org/10.1021/acs.langmuir.9b03704

    Article  CAS  PubMed  Google Scholar 

  35. Yang, S., Sun, J., Ramirez-Cuesta, A., Callear, S., David, W., Anderson, D., Newby, R., Blake, A., Parker, J., Tang, C., Schröder, M.: Selectivity and direct visualization of carbon dioxide and sulfur dioxide in a decorated porous host. Nat. Chem. 4, 887–894 (2012). https://doi.org/10.1038/NCHEM.1457

    Article  CAS  PubMed  Google Scholar 

  36. Cui, X., Yang, Q., Yang, L., Krishna, R., Zhang, Z., Bao, Z., Wu, H., Ren, Q., Zhou, W., Chen, B.: An ultra-stable Zr(IV)-MOF for highly efficient capture of SO2 from SO2/CO2 and SO2/CH4 mixtures. Chem. Eng. J. 431, 134057 (2022). https://doi.org/10.1016/j.cej.2021.134057

    Article  CAS  Google Scholar 

  37. Rivera-Almazo, M., Diaz-Ramirez, M., Hernandez-Esparza, R., Vargas, R., Martinez, A., Martis, V., Saenz-Cavazos, P., Williams, D., Lima, E., Ibarra, I., Garza, J.: Identification of the preferential CO and SO2 adsorption sites within NOTT-401. Phys. Chem. Chem. Phys. 23, 1454–1463 (2021). https://doi.org/10.1039/d0cp04668j

    Article  CAS  PubMed  Google Scholar 

  38. Jeyapaul, A., Ganesapillai, M.: Dual packed bed adsorption of sulphur dioxide from surface modified haematite/III-ferric oxide: characterization of the mass transfer zone. S. Afr. J. Ind. Eng. 33, 95–102 (2020). https://doi.org/10.1016/j.sajce.2020.06.008

    Article  Google Scholar 

  39. Xing, S., Liang, J., Brandt, P., Schafer, F., Nuhnen, A., Heinen, T., Boldog, I., Mollmer, J., Lange, M., Weingart, O., Janiak, C.: Capture and separation of SO2 traces in metal-organic frameworks via pre-synthetic pore environment tailoring by methyl groups. Angew. Chem. Int. Ed. 60, 17998–18005 (2020). https://doi.org/10.1002/anie.202105229

    Article  CAS  Google Scholar 

  40. Langmuir, I.: The constitution and fundamental properties of solids and liquids. J. Franklin I(183), 102–105 (1917). https://doi.org/10.1016/S0016-0032(17)90938-X

    Article  Google Scholar 

  41. Haring, M.: Colloid and capillary chemistry (Freundlich, Herbert). J. Chem. Educ. 3, 1454 (1926). https://doi.org/10.1021/ed003p1454.2

    Article  Google Scholar 

  42. Sips, R.: On the structure of a catalyst surface. J. Chem. Phys. 16, 490 (1928). https://doi.org/10.1063/1.1746922

    Article  Google Scholar 

  43. Toth, J.: A uniform interpretation of gas/solid adsorption. Adv. Colloid Interface 79, 85–95 (1981). https://doi.org/10.1016/0021-9797(81)90050-3

    Article  CAS  Google Scholar 

  44. Khalili, S., Ghoreyshi, A., Jahanshahi, M., Davoodi, M.: Experimental evaluation of CO2/N2 mixture separation by multi-multi-walled carbon nanotube. Acta Phys. Pol. A 123, 230–232 (2013). https://doi.org/10.12693/APhysPolA.123.230

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Sichuan Science and Technology Innovation Seedling Project [Grant Number 2021104] and the Postgraduate Research and Innovation Fund Project of Southwest Petroleum University [Grant Number 2021CXYB13].

Author information

Authors and Affiliations

Authors

Contributions

Yuling Ma: Methodology, investigation, data curation and writing-original draft. Airong Li: Conceptualization, supervision, validation, writing-review and editing. Zhihong Wang and Cheng Wang: Formal analysis, writing-review and editing.

Corresponding author

Correspondence to Airong Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 660 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Li, A., Wang, Z. et al. Preparation of UiO-66-type adsorbents for the separation of SO2 from flue gas. Adsorption 30, 377–387 (2024). https://doi.org/10.1007/s10450-024-00438-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-024-00438-x

Keywords

Navigation