Skip to main content
Log in

Electroanalysis in Pharmacogenomic Studies: Mechanisms of Drug Interaction with DNA

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The review discusses electrochemical methods for analysis of drug interactions with DNA. The electroanalysis method is based on the registration of interaction-induced changes in the electrochemical oxidation potential of heterocyclic nitrogenous bases in the DNA molecule and in the maximum oxidation current amplitude. The mechanisms of DNA–drug interactions can be identified based on the shift in the electrooxidation potential of heterocyclic nitrogenous bases toward more negative (cathodic) or positive (anodic) values. Drug intercalation into DNA shifts the electrochemical oxidation potential to positive values, indicating thermodynamically unfavorable process that hinders oxidation of nitrogenous bases in DNA. The potential shift toward the negative values indicates electrostatic interactions, e.g., drug binding in the DNA minor groove, since this process does not interfere with the electrochemical oxidation of bases. The concentration-dependent decrease in the intensity of electrochemical oxidation of DNA bases allows to quantify the type of interaction and calculate the binding constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Abbreviations

CNT:

carbon nanotubes

dsDNA:

double-stranded DNA

HNB:

heterocyclic nitrogenous base, NA, nucleic acid

SPE:

screen-printed electrode

References

  1. Katara, P. (2013) Role of bioinformatics and pharmacogenomics in drug discovery and development process, Netw. Model Anal. Health Inform. Bioinform., 2, 225-230, https://doi.org/10.1007/s13721-013-0039-5.

    Article  Google Scholar 

  2. Singh, D. B. (2020) The impact of pharmacogenomics in personalized medicine, Adv. Biochem. Eng. Biotechnol., 171, 369-394, https://doi.org/10.1007/10_2019_110.

    Article  CAS  PubMed  Google Scholar 

  3. Ojha, A., and Joshi, T. (2016) A review on the role of pharmacogenomics in drug discovery and development, Int. J. Pharmaceut. Sci. Res., 7, 3587-3595, https://doi.org/10.13040/IJPSR.0975-8232.7(9).3587-95.

    Article  CAS  Google Scholar 

  4. Hasanzadeh, M., and Shadjou, N. (2016) Pharmacogenomic study using bio- and nanobioelectrochemistry: drug-DNA interaction, Mater. Sci. Engin. C, 61, 1002-1017, https://doi.org/10.1016/j.msec.2015.12.020.

    Article  CAS  Google Scholar 

  5. Campos-Carrillo, A., Weitzel, J. N., Sahoo, P., Rockne, R., Mokhnatkin, J. V., Murtaza, M., Gray, S. W., Goetz, L., Goel, A., Schorka, N., and Slavin, T. P. (2020) Circulating tumor DNA as an early cancer detection tool, Pharmacol. Ther., 207, 107458, https://doi.org/10.1016/j.pharmthera.2019.107458.

    Article  CAS  PubMed  Google Scholar 

  6. Rykova, E. Y., Morozkin, E. S., Ponomaryova, A. A., Loseva, E. M., Zaporozhchenko, I. A., Cherdyntseva, N. V., and Laktionov, P. P. (2012) Cell-free and cell-bound circulating nucleic acid complexes: mechanisms of generation, concentration and content, Expert Opin. Biol. Ther., 12, 141-153, https://doi.org/10.1517/14712598.2012.673577.

    Article  CAS  Google Scholar 

  7. Nikolaev, S., Lemmens, L., Koessler, T., Blouin, J.-L., and Nouspikel, T. (2018) Circulating tumoral DNA: preanalytical validation and quality control in a diagnostic laboratory, Anal. Biochem., 542, 34-39, https://doi.org/10.1016/j.ab.2017.11.004.

    Article  CAS  PubMed  Google Scholar 

  8. Bafna, V., and Mischel, P. S. (2022) Extrachromosomal DNA in cancer, Annu. Rev. Genomics Hum. Genet., 23, 29-52, https://doi.org/10.1146/annurev-genom-120821-100535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Crowley, E., Di Nicolantonio, F., Loupakis, F., and Bardelli, A. (2013) Liquid biopsy: monitoring cancer-genetics in the blood, Nat. Rev. Clin. Oncol., 10, 472-484, https://doi.org/10.1038/nrclinonc.2013.110.

    Article  CAS  PubMed  Google Scholar 

  10. Talap, J., Zhao, J., Shen, M., Song, Z., Zhou, H., Kang, Yu., Sun, L., Yu, L., Zenga, S., and Cai, S. (2021) Recent advances in therapeutic nucleic acids and their analytical methods, J. Pharmaceut. Biomed. Anal., 206, 114368, https://doi.org/10.1016/j.jpba.2021.114368.

    Article  CAS  Google Scholar 

  11. Jhawata, V., Guliaa, M., Guptab, S., Maddiboyinac, B., and Dutt, R. (2020) Integration of pharmacogenomics and theranostics with nanotechnology as quality by design (QbD) approach for formulation development of novel dosage forms for effective drug therapy, J. Controll. Rel., 327, 500-511, https://doi.org/10.1016/j.jconrel.2020.08.039.

    Article  CAS  Google Scholar 

  12. Chaires, J. B. (2006) A thermodynamic signature for drug-DNA binding mode, Arch. Biochem. Biophys., 453, 26-31, https://doi.org/10.1016/j.abb.2006.03.027.

    Article  CAS  PubMed  Google Scholar 

  13. Qais, F. A., Abdullah, K. M., Alam, M. M., Naseem, I., and Ahmad, I. (2017) Interaction of capsaicin with calf thymus DNA: a multi-spectroscopic and molecular modelling study, Int. J. Biol. Macromol., 97, 392-402, https://doi.org/10.1016/j.ijbiomac.2017.01.022.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, R., Zhu, J., Sun, D., Li, J., Yao, L., Meng, S., Li, Y., Dang, Y., and Wang, K. (2022) The mechanism of dynamic interaction between doxorubicin and calf thymus DNA at the single-molecule level based on confocal Raman spectroscopy, Micromachines, 13, 940, https://doi.org/10.3390/mi13060940.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Qian, L., Durairaj, S., Prins, S., and Chen, A. (2020) Nanomaterial-based electrochemical sensors and biosensors for the detection of pharmaceutical compounds, Biosens. Bioelectron., 175, 112836, https://doi.org/10.1016/j.bios.2020.112836.

    Article  CAS  PubMed  Google Scholar 

  16. Hua, Yu, Ma, J., Li, D., and Wang, R. (2022) DNA-based biosensors for the biochemical analysis: a review, Biosensors, 12, 183, https://doi.org/10.3390/bios12030183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rehman, S. U., Sarwar, T., Husain, M. A., Ishqi, H. M., and Tabish, M. (2015) Studying non-covalent drug-DNA interactions, Arch. Biochem. Biophys., 576, 49-60, https://doi.org/10.1016/j.abb.2015.03.024.

    Article  CAS  PubMed  Google Scholar 

  18. Eckel, R., Ros, R., Ros, A., Wilking, S. D., Sewald, N., and Anselmetti, D. (2003) Identification of binding mechanisms in single molecule-DNA complexes, Biophys. J., 85, 1968-1973, https://doi.org/10.1016/S0006-3495(03)74624-4.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  19. Das, S., and Kumar, G. S. (2008) Molecular aspects on the interaction of phenosafranine to deoxyribonucleic acid: model for intercalative drug-DNA binding, J. Mol. Struct., 872, 56-63, https://doi.org/10.1016/j.molstruc.2007.02.016.

    Article  CAS  ADS  Google Scholar 

  20. Brabec, V., and Kasparkova, J. (2018) Ruthenium coordination compounds of biological and biomedical significance. DNA binding agents, Coord. Chem. Rev., 376, 75-94, https://doi.org/10.1016/j.ccr.2018.07.012.

    Article  CAS  Google Scholar 

  21. Shumyantseva, V. V., Bulko, T. V., Tikhonova, E. G., Sanzhakov, M. A., Kuzikov, A. V., Masamrekh, R. A., Pergushov, D. V., Schacher, F. H., and Sigolaeva, L. V. (2020) Electrochemical studies of the interaction of rifampicin and nanosome/rifampicin with dsDNA, Bioelectrochemistry, 140, 107736, https://doi.org/10.1016/j.bioelechem.2020.107736.

    Article  CAS  PubMed  Google Scholar 

  22. Pronina, V., Agafonova, L., Masamrekh, R., Kuzikov, A., and Shumyantseva, V. (2022) Interaction of the anticancer drug abiraterone with dsDNA, Biomed. Chem. Res. Methods, 5, e00174, https://doi.org/10.18097/BMCRM00174.

    Article  Google Scholar 

  23. Agafonova, L., Tikhonova, E., Sanzhakov, M., Kostryukova, L., and Shumyantseva, V. (2022) Electrochemical studies of the interaction of phospholipid nanoparticles with dsDNA, Processes, 10, 2324, https://doi.org/10.3390/pr10112324.

    Article  CAS  Google Scholar 

  24. Pronina, V., Kostryukova, L., Bulko, T., and Shumyantseva, V. V. (2023) Interaction of doxorubicin embedded into phospholipid nanoparticles and targeted peptide-modified phospholipid nanoparticles with DNA, Molecules, 28, 5317, https://doi.org/10.3390/molecules28145317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ramotowska, S., Ciesielska, A., and Makowski, M. (2021) What can electrochemical methods offer in determining DNA-drug interactions? Molecules, 26, 3478, https://doi.org/10.3390/molecules26113478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brotons, A., Vidal-Iglesias, F. J., Solla-Gullon, J., and Iniesta, J. (2016) Carbon materials for the electrooxidation of nucleobases, nucleosides and nucleotides toward cytosine methylation detection: a review, Anal. Methods, 8, 702-715, https://doi.org/10.1039/C5AY02616D.

    Article  CAS  Google Scholar 

  27. Trotter, M., Borst, N., Thewes, R., and von Stetten, F. (2020) Review: electrochemical DNA sensing – principles, commercial systems, and applications, Biosens. Bioelectron., 154, 112069, https://doi.org/10.1016/j.bios.2020.112069.

    Article  CAS  PubMed  Google Scholar 

  28. Ferapontova, E. E. (2017) Hybridization biosensors relying on electrical properties of nucleic acids, Electroanalysis, 29, 6-13, https://doi.org/10.1002/elan.201600593.

    Article  CAS  Google Scholar 

  29. Ferapontova, E. E. (2018) DNA electrochemistry and electrochemical sensor for nucleic acids, Annu. Rev. Anal. Chem., 11, 197-218, https://doi.org/10.1146/annurev-anchem-061417-125811.

    Article  CAS  Google Scholar 

  30. Li, Q., Batchelor-McAuley, C., and Compon, R. G. (2010) Electrochemical oxidation of guanine: electrode reaction mechanism and tailoring carbon electrode surface to switch between adsorptive and diffusional responses, J. Phys. Chem. B, 114, 7423-7428, https://doi.org/10.1021/jp1021196.

    Article  CAS  PubMed  Google Scholar 

  31. Gonçalves, L. M., Bachelor-McAuley, C., Barros, A., and Comton, R. G. (2010) Electrochemical oxidation of adenine: a mixed adsorption and diffusion response on an edge-plane pyrolytic graphite electrode, J. Phys. Chem. B, 114, 14213-14219, https://doi.org/10.1021/jp1046672.

    Article  CAS  Google Scholar 

  32. Shumyantseva, V. V., Agafonova, L. E., Bulko, T. V., Kuzikov, A. V., Masamrekh, R. A., Yuan, J., Schacher, F. H., Pergushow, D. V., and Sigolaeva, L. V. (2021) Electroanalysis of biomolecules: rational selection of sensor construction [In Russian], Usp. Biol. Khim., 61, 295-316.

    Google Scholar 

  33. Bard, A. J., and Faulkner, L. R. (1980) Electrochemical Methods: Fundamentals and Applications, John Wiley & Sons, New York.

  34. Sharma, V. K., Jelen, F., and Trnkova, L. (2015) Functionalized solid electrodes for electrochemical biosensing of purine nucleobases and their analogues: a review, Sensors, 15, 1564-1600, https://doi.org/10.3390/s150101564.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  35. Meng, X., O’Hare, D., and Ladame, S. (2023) Surface immobilization strategies for the development of electrochemical nucleic acid sensors, Biosens. Bioelectron., 237, 115440, https://doi.org/10.1016/j.bios.2023.115440.

    Article  CAS  PubMed  Google Scholar 

  36. Alim, S., Vejayan, J., Yusoff, M., and Kafi, A. K. M. (2018) Recent uses of carbon nanotubes & gold nanoparticles in electrochemistry with application in biosensing, Biosens. Bioelectron., 121, 125-136, https://doi.org/10.1016/j.bios.2018.08.051.

    Article  CAS  PubMed  Google Scholar 

  37. Mi, L., He, F., Jiang, L., Shangguan, L., Zhang, X., Ding, T., Liu, A., Zhang, Y., and Liu, S. (2017) Electrochemically-driven benzo[a]pyrene metabolism via human cytochrome P450 1A1 with reductase coated nitrogen-doped graphene nano- composites, J. Electroanal. Chem., 804, 23-28, https://doi.org/10.1016/j.jelechem.2017.09.035.

    Article  CAS  Google Scholar 

  38. Sharma, S., Singh, N., Tomar, V., and Chandra, R. (2018) A review on electrochemical detection of serotonin based on surface modified electrodes, Biosens. Bioelectron., 107, 76-93, https://doi.org/10.1016/j.bios.2018.02.013.

    Article  CAS  PubMed  Google Scholar 

  39. Anzar, N., Hasan, R., Tyagi, M., Yadav, N., and Narang, J. (2020) Carbon nanotube – a review on Synthesis, Properties and plethora of applications in the field of biomedical science, Sensors Int., 1, 100003, https://doi.org/10.1016/j.sintl.2020.100003.

    Article  Google Scholar 

  40. Hu, C., and Hu, S. (2009) Carbon nanotube-based electrochemical sensors: principles and applications in biomedical systems, J. Sensors, 2009, 1-40, https://doi.org/10.1155/2009/187615.

    Article  CAS  Google Scholar 

  41. Carrara, S., Baj-Rossi, C., Boero, C., and De Micheli, G. (2014) Do carbon nanotubes contribute to electrochemical biosensing? Electrochim. Acta, 128, 102-112, https://doi.org/10.1016/j.electacta.2013.12.123.

    Article  CAS  Google Scholar 

  42. Baig, N., Sajid, M., and Saleh, T. A. (2019) Recent trends in nanomaterial-modified electrodes for electroanalytical applications, Trends Anal. Chem., 111, 47-61, https://doi.org/10.1016/j.trac.2018.11.044.

    Article  CAS  Google Scholar 

  43. Rivera-Gavidia, L. M., Luis-Sunga, M., Bousa, M., Vales, V., Kalbac, M., Arévalo, M. C., Pastor, E., and García, G. (2020) S- and N-doped graphene-based catalysts for the oxygen evolution reaction, Electrochim. Acta, 340, 135975, https://doi.org/10.1016/j.electacta.2020.135975.

    Article  CAS  Google Scholar 

  44. Ren, S., Wang, H., Zhang, H., Yu, L., Li, M., and Li, M. (2015) Direct electrocatalytic and simultaneous determination of purine and pyrimidine DNA bases using novel mesoporous carbon fibers as electrocatalyst, J. Electroanal. Chem., 750, 65-73, https://doi.org/10.1016/j.jelechem.2015.05.020.

    Article  CAS  Google Scholar 

  45. Shumyantseva, V. V., Bulko, T. V., Agafonova, L. E., Pronina, V. V., and Kostryukova, L. V. (2023) Comparative analysis of the interaction between the antiviral drug umifenovir and umifenovir encapsulated in phospholipids micelles (nanosome/umifenovir) with dsDNA as a model for pharmacogenomic analysis by electrochemical methods, Processes, 11, 992, https://doi.org/10.3390/pr11030922.

    Article  CAS  Google Scholar 

  46. Kostryukova, L. V., Tereshkina, Yu. A., Tikhonova, E. G., Khudoklinova, Yu. Yu., Bobrova, D. V., Gisina, A. M., Morozevich, G. E., Pronina, V. V., Bulko, T. V., and Shumyantseva, V. V. (2023) Effect of an NGR peptide on the efficacy of the doxorubicin phospholipid delivery system, Nanomaterials, 13, 2229, https://doi.org/10.3390/nano13152229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Muti, M., and Muti, M. (2018) Electrochemical monitoring of the interaction between anticancer drug and DNA in the presence of antioxidant, Talanta, 178, 1033-1039, https://doi.org/10.1016/j.talanta.2017.08.089.

    Article  CAS  PubMed  Google Scholar 

  48. Rupar, J., Dobričić, V., Brborić, J., Čudina, O., and Aleksić, M. M. (2023) Square wave voltammetric study of interaction between 9-acridinyl amino acid derivatives and DNA, Bioelectrochemistry, 149, 108323, https://doi.org/10.1016/j.bioelechem.2022.108323.

    Article  CAS  PubMed  Google Scholar 

  49. Zakariah, E. I., Ariffin, E. Y., Nokarajoo, D., Akbar, M., Lee, Y., and Hasbullah, S. (2024) Highly sensitive of an electrochemical DNA biosensor detection towards toxic dinoflagellates Alexandrium minutum (A. minutum), Microchem. J., 199, 109997, https://doi.org/10.1016/j.microc.2024.109997.

    Article  CAS  Google Scholar 

  50. Gurova, K. (2009) New hopes from old drugs: revisiting DNA-binding small molecules as anticancer agents, Fut. Oncol., 5, 1685, https://doi.org/10.2217/FON.09.127.

    Article  CAS  Google Scholar 

  51. Lima, D., Hacke, A. C. M., Inaba, J., Pessôa, C. A., and Kerman, K. (2020) Electrochemical detection of specific interactions between apolipoprotein E isoforms and DNA sequences related to Alzheimer’s disease, Bioelectrochemistry, 133, 107447, https://doi.org/10.1016/j.bioelechem.2019.107447.

    Article  CAS  PubMed  Google Scholar 

  52. Meunier-Prest, R., Bouyon, A., Rampazzi, E., Raveau, S., Andreoletti, P., and Cherkaoui-Malki, M. (2010) Electrochemical probe for the monitoring of DNA-protein interactions, Biosens. Bioelectron., 25, 2598-2602, https://doi.org/10.1016/j.bios.2010.04.023.

    Article  CAS  PubMed  Google Scholar 

  53. Zhao, M., Ma, J., Li, M., Zhang, Y., Jiang, B., Zhao, X., Huai, C., Shen, L., Zhang, N., He, L., and Qin, S. (2021) Cytochrome P450 enzymes and drug metabolism in humans, Int. J. Mol. Sci., 22, 12808, https://doi.org/10.3390/ijms222312808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Findik, M., Bingol, H., and Erdem, A. (2021) Hybrid nanoflowers modified pencil graphite electrodes developed for electrochemical monitoring of interaction between Mitomycin C and DNA, Talanta, 222, 121647, https://doi.org/10.1016/j.talanta.2020.121647.

    Article  CAS  PubMed  Google Scholar 

  55. Bagni, G., Osella, D., Sturchio, E., and Macsini, M. (2006) Deoxyribonucleic acid (DNA) biosensors for environmental risk assessment and drug studies, Anal. Chim. Acta, 573, 81-89, https://doi.org/10.1016/j.aca.2006.03.085.

    Article  CAS  PubMed  Google Scholar 

  56. Wani, T. A., Alsaif, N., Bakheit, A. H., Zargar, S., Al-Mehizia, A. A., and Khan, A. A. (2020) Interaction of an abiraterone with calf thymus DNA: investigation with spectroscopic technique and modelling studies, Bioorg. Chem., 100, 103957, https://doi.org/10.1016/j.bioorg.2020.103957.

    Article  CAS  PubMed  Google Scholar 

  57. Nafisi, S., Saboury, A. A., Keramat, N., Neault, J. F., and Tajmir-Riahi, H. A. (2007) Stability and structural features of DNA intercalation with ethidium bromide, acridine orange and methylene blue, J. Mol. Struct., 827, 35-43, https://doi.org/10.1016/j.molstruc.2006.05.004.

    Article  CAS  ADS  Google Scholar 

  58. Sirajuddin, M., Ali, S., and Badshah, A. (2013) Drug-DNA interactions and their study by UV-vis, fluorescence spectroscopies and cyclic voltammetry, J. Photochem. Photobiol. B Biol., 124, 1-19, https://doi.org/10.1016/j.jphotobiol.2013.03.013.

    Article  CAS  Google Scholar 

  59. Dogan-Topal, B., Bozal-Palabiyik, B., Ozkan, S. A., and Uslu, B. (2014) Investigation of anticancer drug lapatinib and its interaction with dsDNA by electrochemical and spectroscopic techniques, Sensors Actuat. B Chem., 194, 185-194, https://doi.org/10.1016/j.snb.2013.12.088.

    Article  CAS  Google Scholar 

  60. Temerk, Y., Ibrahim, M., Ibrahim, H., and Kotb, M. (2016) Interactions of an anticancer drug lomustine with single and double stranded DNA at physiological conditions analysed by electrochemical and spectroscopic methods, J. Electroanal. Chem., 769, 62-71, https://doi.org/10.1016/j.jelechem.2016.03.020.

    Article  CAS  Google Scholar 

  61. Yazan, Z., Bayraktepe, D. E., and Dinç, E. (2020) Four-way parallel factor analysis of voltammetric four-way dataset for monitoring the etoposide-DNA interaction with its binding constant determination, Bioelectrochemistry, 134, 107525, https://doi.org/10.1016/j.bioelechem.2020.107525.

    Article  CAS  PubMed  Google Scholar 

  62. Chiorcea-Paquim, A.-M., and Oliveira-Brett, A. M. (2021) DNA electrochemical biosensors for in situ probing of pharmaceutical drug oxidative DNA damage, Sensors, 21, 1125, https://doi.org/10.3390/s21041125.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  63. Erdem, A., Muti, M., Papakonstantinou, P., Canavar, E., Karadeniz, H., Congur, G., and Sharma, S. (2012) Graphene oxide integrated sensor for electrochemical monitoring of mitomycin C-DNA interaction, Analyst, 137, 2129-2135, https://doi.org/10.1039/c2an16011k.

    Article  CAS  PubMed  ADS  Google Scholar 

  64. Eksin, E., Zor, E., Erdem, A., and Bingöl, H. (2017) Electrochemical monitoring of biointeraction by graphene-based material modified pencil graphite electrode, Biosens. Bioelectron., 92, 207-214, https://doi.org/10.1016/j.bios.2017.02.016.

    Article  CAS  PubMed  Google Scholar 

  65. Fotouhi, L., and Bahmani, F. (2013) MWCNT modified glassy carbon electrode: probing furazolidone-DNA interactions and DNA determination, Electroanalysis, 25, 757-764, https://doi.org/10.1002/elan.201200495.

    Article  CAS  Google Scholar 

  66. Kalanur, S. S., Katrahalli, U., and Seetharamappa, J. (2009) Electrochemical studies and spectroscopic investigations on the interaction of an anticancer drug with DNA and their analytical applications, J. Electroanal. Chem., 636, 93-100, https://doi.org/10.1016/j.jelechem.2009.09.018.

    Article  CAS  Google Scholar 

  67. Diculescu, V. C., Chiorcea-Paquim, A.-M., and Oliveira-Brett, A. M. (2016) Applications of a DNA-electrochemical biosensor, Trends Anal. Chem., 79, 23-36, https://doi.org/10.1016/j.trac.2016.01.019.

    Article  CAS  Google Scholar 

  68. Bayraktepe, D. E. (2020) A voltammetric study on drug-DNA interactions: Kinetic and thermodynamic aspects of the relations between the anticancer agent dasatinib and ds-DNA using a pencil lead graphite electrode, Microchem. J., 157, 104946, https://doi.org/10.1016/j.microc.2020.104946.

    Article  CAS  Google Scholar 

  69. Nimal, R., Unal, D. N., Erkmen, C., Bozal-Palabiyik, B., Siddiq, M., Eren, G., Shah, A., and Uslu, B. (2022) Development of the electrochemical, spectroscopic and molecular docking approaches toward the investigation of interaction between DNA and anti-leukemic drug azacytidine, Bioelectrochemistry, 146, 108135, https://doi.org/10.1016/j.bioelechem.2022.108135.

    Article  CAS  PubMed  Google Scholar 

  70. Bolat, G. (2020) Investigation of poly(CTAB-MWCNTs) composite based electrochemical DNA biosensor and interaction study with anticancer drug Irinotecan, Microchem. J., 159, 105426, https://doi.org/10.1016/j.microc.2020.105426.

    Article  CAS  Google Scholar 

  71. Mousaabadi, K. Z., Ensafi, A. A., Hadadzadeh, H., Shirani, M. P. (2024) Impact of temperature on the binding interaction between dsDNA and curcumin: An electrochemical study, Bioelectrochemistry, 156, 108621, https://doi.org/10.1016/j.bioelechem.2023.108621.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was carried out within the framework of the Program of Basic Scientific Research in the Russian Federation for 2021-2030 (no. 122030100168-2).

Author information

Authors and Affiliations

Authors

Contributions

V.V.Sh. and L.E.A. developed a concept, designed the experiments, and analyzed the obtained data; V.V.P., T.V.B., and L.E.A. performed electrochemical experiments, V.V.Sh. prepared an original draft, L.E.A. and V.V.P. carried out a review and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Victoria V. Shumyantseva.

Ethics declarations

This work does not contain any studies involving human and animal subjects. The authors of this work declare that they have no conflicts of interest.

Additional information

Translated from Uspekhi Biologicheskoi Khimii, 2024, Vol. 64, pp. 431-448.

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shumyantseva, V.V., Pronina, V.V., Bulko, T.V. et al. Electroanalysis in Pharmacogenomic Studies: Mechanisms of Drug Interaction with DNA. Biochemistry Moscow 89 (Suppl 1), S224–S233 (2024). https://doi.org/10.1134/S0006297924140128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297924140128

Keywords

Navigation