Skip to main content
Log in

Synthetic Biology Approaches to Posttranslational Regulation in Plants

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

To date synthetic biology approaches involving creation of functional genetic modules are used in a wide range of organisms. In plants, such approaches are used both for research in the field of functional genomics and to increase the yield of agricultural crops. Of particular interest are methods that allow controlling genetic apparatus of the plants at post-translational level, which allow reducing non-targeted effects from interference with the plant genome. This review discusses recent advances in the plant synthetic biology for regulation of the plant metabolism at posttranslational level and highlights their future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Abbreviations

BR:

Brassinosteroid Response

BRI1:

Brassinosteroid Insensitive 1

GFP:

green fluorescent protein

CRY1:

cryptochrome 1

HACR:

hormone-activated Cas9-based repressors

PAP:

peptide aptamer

References

  1. Onishchenko, G. G., Kutyrev, V. V., Odinokov, G. N., and Safronov, V. A. (2014) Synthetic biology: risks and prospects, Probl. Partic. Dang. Infect., 3, 5-10, https://doi.org/10.21055/0370-1069-2014-3-5-10.

    Article  Google Scholar 

  2. Frizzi, A., and Huang, S. (2010) Tapping RNA silencing pathways for plant biotechnology, Plant Biotechnol. J., 8, 655-677, https://doi.org/10.1111/j.1467-7652.2010.00505.x.

    Article  CAS  PubMed  Google Scholar 

  3. Gaj, T., Gersbach, C. A., and Barbas, C. F., 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering, Trends Biotechnol., 31, 397-405, https://doi.org/10.1016/j.tibtech.2013.04.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vanstraelen, M., and Benkova, E. (2012) Hormonal interactions in the regulation of plant development, Annu. Rev. Cell Dev. Biol., 28, 463-487, https://doi.org/10.1146/annurev-cellbio-101011-155741.

    Article  CAS  PubMed  Google Scholar 

  5. Koltai, H. (2015) Cellular events of strigolactone signalling and their crosstalk with auxin in roots, J. Exp. Bot., 66, 4855-4861, https://doi.org/10.1093/jxb/erv178.

    Article  CAS  PubMed  Google Scholar 

  6. Naseem, M., Kaltdorf, M., and Dandekar, T. (2015) The nexus between growth and defence signalling: auxin and cytokinin modulate plant immune response pathways, J. Exp. Bot., 66, 4885-4896, https://doi.org/10.1093/jxb/erv297.

    Article  CAS  PubMed  Google Scholar 

  7. Brophy, J. A. N., LaRue, T., and Dinneny, J. R. (2017) Understanding and engineering plant form, Semin. Cell Dev. Biol., 79, 68-77, https://doi.org/10.1016/j.semcdb.2017.08.051.

    Article  PubMed  Google Scholar 

  8. Voytas, D. F., and Gao, C. (2014) Precision genome engineering and agriculture: opportunities and regulatory challenges, PLoS Biol., 12, e1001877, https://doi.org/10.1371/journal.pbio.1001877.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Khakhar, A., Leydon, A. R., Lemmex, A. C., Klavins, E., and Nemhauser, J. L. (2018) Synthetic hormone-responsive transcription factors can monitor and reprogram plant development, eLife, 7, e34702, https://doi.org/10.7554/eLife.34702.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Asher, G., Tsvetkov, P., Kahana, C., and Shaul, Y. A. (2005) Mechanism of ubiquitin-independent proteasomal degradation of the tumor suppressors p53 and p73, Genes Dev., 19, 316-321, https://doi.org/10.1101/gad.319905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Erales, J., and Coffino, P. (2014) Ubiquitin-independent proteasomal degradation, Biochim. Biophys. Acta, 1843, 216-221, https://doi.org/10.1016/j.bbamcr.2013.05.008.

    Article  CAS  PubMed  Google Scholar 

  12. Hochstrasser, M. (1996) Ubiquitin-dependent protein degradation, Annu. Rev. Genet., 30, 405-439, https://doi.org/10.1146/annurev.genet.30.1.405.

    Article  CAS  PubMed  Google Scholar 

  13. Gilbert, L. A., Larson, M. H., Morsut, L., Liu, Z., Brar, G. A., Torres, S. E., Stern-Ginossar, N., Brandman, O., Whitehead, E. H., Doudna, J. A., Lim, W. A., Weissman, J. S., and Qi, L. S. (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes, Cell, 154, 442-451, https://doi.org/10.1016/j.cell.2013.06.044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moss, B. L., Mao, H., Guseman, J. M., Hinds, T. R., Hellmuth, A., Kovenock, M., Noorassa, A., Lanctot, A., Villalobos, L. I., Zheng, N., and Nemhauser, J. L. (2015) Rate motifs tune auxin/indole-3-Acetic acid degradation dynamics, Plant Physiol., 169, 803-813, https://doi.org/10.1104/pp.15.00587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pierre-Jerome, E., Jang, S. S., Havens, K. A., Nemhauser, J. L., and Klavins, E. (2014) Recapitulation of the forward nuclear auxin response pathway in yeast, Proc. Natl. Acad. Sci. USA, 111, 9407-9412, https://doi.org/10.1073/pnas.1324147111.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Staudt, A. C., and Wenkel, S. (2011) Regulation of protein function by ‘micro-Proteins’, EMBO Rep., 12, 35-42, https://doi.org/10.1038/embor.2010.196.

    Article  CAS  PubMed  Google Scholar 

  17. Graeff, M., and Wenkel, S. (2012) Regulation of protein function by interfering protein species, Biomol. Concepts, 3, 71-78, https://doi.org/10.1515/bmc.2011.053.

    Article  CAS  PubMed  Google Scholar 

  18. Eguen, T., Straub, D., Graeff, M., and Wenkel, S. (2015) MicroProteins: small size big impact, Trends Plant Sci., 20, 477-482, https://doi.org/10.1016/j.tplants.2015.05.011.

    Article  CAS  PubMed  Google Scholar 

  19. Seo, P. J., Hong, S. Y., Ryu, J. Y., Jeong, E. Y., Kim, S. G., Baldwin, I. T., and Park, C. M. (2012) Targeted inactivation of transcription factors by overexpression of their truncated forms in plants, Plant J., 72, 162-172, https://doi.org/10.1111/j.1365-313X.2012.05069.x.

    Article  CAS  PubMed  Google Scholar 

  20. Straub, D., and Wenkel, S. (2017) Cross-species genome-wide identification of evolutionary conserved micro-proteins, Genome Biol. Evol., 9, 777-789, https://doi.org/10.1093/gbe/evx041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dolde, U., Rodrigues, V., Straub, D., Bhati, K. K., Choi, S., Yang, S. W., and Wenkel, S. (2018) Synthetic micro-proteins: versatile tools for posttranslational regulation of target proteins, Plant Physiol., 176, 3136-3145, https://doi.org/10.1104/pp.17.01743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schauer, S. E., Jacobsen, S. E., Meinke, D. W., and Ray, A. (2002) DICER-LIKE1: blind men and elephants in Arabidopsis development, Trends Plant Sci., 7, 487-491, https://doi.org/10.1016/S1360-1385(02)02355-5.

    Article  CAS  PubMed  Google Scholar 

  23. Voinnet, O. (2009) Origin, biogenesis, and activity of plant microRNAs, Cell, 136, 669-687, https://doi.org/10.1016/j.cell.2009.01.046.

    Article  CAS  PubMed  Google Scholar 

  24. Hiraguri, A., Itoh, R., Kondo, N., Nomura, Y., Aizawa, D., Murai, Y., Koiwa, H., Seki, M., Shinozaki, K., and Fukuhara, T. (2005) Specific interactions between Dicer-like proteins and HYL1/DRB-family dsRNA-binding proteins in Arabidopsis thaliana, Plant Mol. Biol., 57, 173-188, https://doi.org/10.1007/s11103-004-6853-5.

    Article  CAS  PubMed  Google Scholar 

  25. Kurihara, Y., Takashi, Y., Watanabe, Y. (2006) The interaction between DCL1 and HYL1 is important for efficient and precise processing of primiRNA in plant microRNA biogenesis, RNA, 12, 206-212, https://doi.org/10.1261/rna.2146906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dong, Z., Han, M. H., and Fedoroff, N. (2008) The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1, Proc. Natl. Acad. Sci. USA, 105, 9970-9975, https://doi.org/10.1073/pnas.0803356105.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  27. Liu, C., Axtell, M. J., and Fedoroff, N. V. (2012) The helicase and RNaseIIIa domains of Arabidopsis Dicer-Like1 modulate catalytic parameters during microRNA biogenesis, Plant Physiol., 159, 748-758, https://doi.org/10.1104/pp.112.193508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yu, B., Bi, L., Zheng, B., Ji, L., Chevalier, D., Agarwal, M., Ramachandran, V., Li, W., Lagrange, T., Walker, J. C., et al. (2008) The FHA domain proteins DAWDLE in Arabidopsis and SNIP1 in humans act in small RNA biogenesis, Proc. Natl. Acad. Sci. USA, 105, 10073-10078, https://doi.org/10.1073/pnas.0804218105.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  29. Machida, S., Chen, H. Y., and Yuan, Y. A. (2011) Molecular insights into miRNA processing by Arabidopsis thaliana SERRATE, Nucleic Acids Res., 39, 7828-7836, https://doi.org/10.1093/nar/gkr428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cashmore, A. R., Jarillo, J. A., Wu, Y. J., and Liu, D. (1999) Cryptochromes: blue light receptors for plants and animals, Science, 284, 760-765, https://doi.org/10.1126/science.284.5415.760.

    Article  CAS  PubMed  ADS  Google Scholar 

  31. Chaves, I., Pokorny, R., Byrdin, M., Hoang, N., Ritz, T., Brettel, K., Essen, L. O., van der Horst, G. T., Batschauer, A., and Ahmad, M. (2011) The cryptochromes: blue light photoreceptors in plants and animals, Annu. Rev. Plant Biol., 62, 335-364, https://doi.org/10.1146/annurev-arplant-042110-103759.

    Article  CAS  PubMed  Google Scholar 

  32. Ahmad, M., and Cashmore, A. R. (1993) HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor, Nature, 366, 162-166, https://doi.org/10.1038/366162a0.

    Article  CAS  PubMed  ADS  Google Scholar 

  33. Guo, H., Yang, H., Mockler, T. C., and Lin, C. (1998) Regulation of flowering time by Arabidopsis photoreceptors, Science, 279, 1360-1363, https://doi.org/10.1126/science.279.5355.1360.

    Article  CAS  PubMed  ADS  Google Scholar 

  34. Lin, C., Yang, H., Guo, H., Mockler, T., Chen, J., and Cashmore, A. R. (1998) Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2, Proc. Natl. Acad. Sci. USA, 95, 2686-2690, https://doi.org/10.1073/pnas.95.5.2686.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  35. El-Din El-Assal, S., Alonso-Blanco, C., Peeters, A. J., Raz, V., and Koornneef, M. (2001) A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2, Nat. Genet., 29, 435-440, https://doi.org/10.1038/ng767.

    Article  CAS  PubMed  Google Scholar 

  36. Sang, Y., Li, Q. H., Rubio, V., Zhang, Y. C., Mao, J., Deng, X. W., and Yang, H. Q. (2005) N-terminal domain-mediated homodimerization is required for photoreceptor activity of Arabidopsis CRYPTOCHROME 1, Plant Cell, 17, 1569-1584, https://doi.org/10.1105/tpc.104.029645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. He, S. B., Wang, W. X., Zhang, J. Y., Xu, F., Lian, H. L., Li, L., and Yang, H. Q. (2015) The CNT1 domain of Arabidopsis CRY1 alone is sufficient to mediate blue light inhibition of hypocotyl elongation, Mol. Plant, 8, 822-825, https://doi.org/10.1016/j.molp.2015.02.008.

    Article  CAS  PubMed  Google Scholar 

  38. Liu, B., Yang, Z., Gomez, A., Liu, B., Lin, C., and Oka, Y. (2016) Signaling mechanisms of plant cryptochromes in Arabidopsis thaliana, J. Plant Res., 129, 137-148, https://doi.org/10.1007/s10265-015-0782-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang, H. Q., Wu, Y. J., Tang, R. H., Liu, D., Liu, Y., and Cashmore, A. R. (2000) The C termini of Arabidopsis cryptochromes mediate a constitutive light response, Cell, 103, 815-827, https://doi.org/10.1016/S0092-8674(00)00184-7.

    Article  CAS  PubMed  Google Scholar 

  40. Lin, C., Robertson, D. E., Ahmad, M., Raibekas, A. A., Jorns, M. S., Dutton, P. L., and Cashmore, A. R. (1995) Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1, Science, 269, 968-970, https://doi.org/10.1126/science.7638620.

    Article  CAS  PubMed  ADS  Google Scholar 

  41. Kim, T. W., and Wang, Z. Y. (2010) Brassinosteroid signal transduction from receptor kinases to transcription factors, Annu. Rev. Plant Biol., 61, 681-704, https://doi.org/10.1146/annurev.arplant.043008.092057.

    Article  CAS  PubMed  Google Scholar 

  42. Wang, X., and Chory, J. (2006) Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane, Science, 313, 1118-1122, https://doi.org/10.1126/science.1127593.

    Article  CAS  PubMed  ADS  Google Scholar 

  43. Li, J., Wen, J., Lease, K. A., Doke, J. T., Tax, F. E., and Walker, J. C. (2002) BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling, Cell, 110, 213-222, https://doi.org/10.1016/S0092-8674(02)00812-7.

    Article  CAS  PubMed  Google Scholar 

  44. Nam, K. H., Li, J. (2002) BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling, Cell, 110, 203-212, https://doi.org/10.1016/S0092-8674(02)00814-0.

    Article  CAS  PubMed  Google Scholar 

  45. Bishop, A. C., Ubersax, J. A., Petsch, D. T., Matheos, D. P., Gray, N. S., Blethrow, J., Shimizu, E., et al. (2000) A chemical switch for inhibitor-sensitive alleles of any protein kinase, Nature, 407, 395-401, https://doi.org/10.1038/35030148.

    Article  CAS  PubMed  ADS  Google Scholar 

  46. Banaszynski, L. A., Chen, L. C., Maynard-Smith, L. A., Ooi, A. L., and Wandless, T. J. (2006) A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules, Cell, 126, 995-1004, https://doi.org/10.1016/j.cell.2006.07.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cho, U., Zimmerman, S. M., Chen, L. C., Owen, E., Kim, J. V., Kim, S. K., and Wandless, T. J. (2013) Rapid and tunable control of protein stability in Caenorhabditis elegans using a small molecule, PLoS One, 8, e72393, https://doi.org/10.1371/journal.pone.0072393.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  48. Dvorin, J. D., Martyn, D. C., Patel, S. D., Grimley, J. S., Collins, C. R., Hopp, C. S., Bright, A. T., et al. (2010) A plant-like kinase in Plasmodium falciparum regulates parasite egress from erythrocytes, Science, 328, 910-912, https://doi.org/10.1126/science.1188191.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  49. Herm-Götz, A., Agop-Nersesian, C., Münter, S., Grimley, J. S., Wandless, T. J., Frischknecht, F., and Meissner, M. (2007) Rapid control of protein level in the apicomplexan Toxoplasma gondii, Nat. Methods, 4, 1003-1005, https://doi.org/10.1038/nmeth1134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Madeira da Silva, L., Owens, K. L., Murta, S. M., and Beverley, S. M. (2009) Regulated expression of the Leishmania major surface virulence factor lipophosphoglycan using conditionally destabilized fusion proteins, Proc. Natl. Acad. Sci. USA, 106, 7583-7588, https://doi.org/10.1073/pnas.0901698106.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  51. Su, L., Li, A., Li, H., Chu, C., and Qiu, J. L. (2013) Direct modulation of protein level in Arabidopsis, Mol. Plant, 6, 1711-1714, https://doi.org/10.1093/mp/sst043.

    Article  CAS  PubMed  ADS  Google Scholar 

  52. Zhang, J., Yin, K., Sun, J., Gao, J., Du, Q., Li, H., and Qiu, J. L. (2018) Direct and tunable modulation of protein levels in rice and wheat with a synthetic small molecule, Plant Biotechnol. J., 16, 472-481, https://doi.org/10.1111/pbi.12787.

    Article  CAS  PubMed  Google Scholar 

  53. Rousseau, F., Serrano, L., and Schymkowitz, J. W. H. (2006) How evolutionary pressure against protein aggregation shaped chaperone specificity, J. Mol. Biol., 355, 1037-1047, https://doi.org/10.1016/j.jmb.2005.11.035.

    Article  CAS  PubMed  Google Scholar 

  54. Goldschmidt, L., Teng, P. K., Riek, R., and Eisenberg, D. (2010) Identifying the amylome, proteins capable of forming amyloid-like fibrils, Proc. Natl. Acad. Sci. USA, 107, 3487-3492, https://doi.org/10.1073/pnas.0915166107.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  55. Fernandez-Escamilla, A-M., Rousseau, F., Schymkowitz, J., and Serrano, L. (2004) Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins, Nature Biotechnol., 22, 1302-1306, https://doi.org/10.1038/nbt1012.

    Article  CAS  Google Scholar 

  56. Betti, C., Vanhoutte, I., Coutuer, S., Rycke, R. D., Mishev, K., Vuylsteke, M., Aesaert, S., Rombaut, D., Gallardo, R., De Smet, F., Xu, J., van Lijsebettens, M., van Breusegem, F., Inzé, D., Rousseau, F., Schymkowitz, J., and Russinova, E. (2016) Sequence-specific protein aggregation generates defined protein knockdowns in plants, Plant Physiol., 171, 773-787, https://doi.org/10.1104/pp.16.00335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vert, G., Chory, J., and Chory, J. (2006) Downstream nuclear events in brassinosteroid signalling, Nature, 441, 96-100, https://doi.org/10.1038/nature04681.

    Article  CAS  PubMed  ADS  Google Scholar 

  58. Yan, Z., Zhao, J., Peng, P., Chihara, R. K., and Li, J. (2009) BIN2 functions redundantly with other Arabidopsis GSK3-like kinases to regulate brassinosteroid signaling, Plant Physiol., 150, 710-721, https://doi.org/10.1104/pp.109.138099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Maloshenok, L. G., Abdeeva, I. A., Panina, J. S., Piruzian, E. S., Zolotarenko, A. D., and Bruskin, S. A. (2018) Development of methods for the target-specific protein elimination in plants, Russ. J. Genet., 54, 1353-1357, https://doi.org/10.1134/S1022795418110091.

    Article  Google Scholar 

  60. Dzhafarov, M., Abdeeva, I., Zolotarenko, A., Panina, J., Piruzian, E., Bruskin, S., and Maloshenok, L. (2018) A modified E3 ubiquitin ligase CHIP of Arabidopsis thaliana for the target degradation of GFP, Open Bio, 8, 177-178.

    Google Scholar 

  61. Gong, P., Quan, H., and He, C. (2014) Targeting MAGO proteins with a peptide aptamer reinforces their essential roles in multiple rice developmental pathways, Plant J., 80, 905-914, https://doi.org/10.1111/tpj.12672.

    Article  CAS  PubMed  Google Scholar 

  62. Gong, P. C., Zhao, M., and He, C. Y. (2014) Slow co-evolution of the MAGO and Y14protein families is required for the maintenance of their obligate heterodimerization mode, PLoS One, 9, e84842, https://doi.org/10.1371/journal.pone.0084842.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  63. Abdeeva, I. A., Maloshenok, L. G., Pogorelko, G. V., Mokrykova, M. V., and Bruskin, S. A. (2019) RNA-aptamers-As targeted inhibitors of protein functions in plants, J. Plant Physiol., 232, 127-129, https://doi.org/10.1016/j.jplph.2018.10.026.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2021-1064).

Author information

Authors and Affiliations

Authors

Contributions

I.A.A. developed the concept, supervised the study, and wrote the manuscript; Yu.S.P. and L.G.M. wrote and edited the manuscript.

Corresponding authors

Correspondence to Inna A. Abdeeva or Liliya G. Maloshenok.

Ethics declarations

This work does not contain any studies involving human and animal subjects. The authors of this work declare that they have no conflicts of interest.

Additional information

Translated from Uspekhi Biologicheskoi Khimii, 2024, Vol. 64, pp. 533-556.

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdeeva, I.A., Panina, Y.S. & Maloshenok, L.G. Synthetic Biology Approaches to Posttranslational Regulation in Plants. Biochemistry Moscow 89 (Suppl 1), S278–S289 (2024). https://doi.org/10.1134/S0006297924140165

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297924140165

Keywords

Navigation