Skip to main content
Log in

Tumor Organoids: The Era of Personalized Medicine

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The strategies of future medicine are aimed to modernize and integrate quality approaches including early molecular-genetic profiling, identification of new therapeutic targets and adapting design for clinical trials, personalized drug screening (PDS) to help predict and individualize patient treatment regimens. In the past decade, organoid models have emerged as an innovative in vitro platform with the potential to realize the concept of patient-centered medicine. Organoids are spatially restricted three-dimensional clusters of cells ex vivo that self-organize into complex functional structures through genetically programmed determination, which is crucial for reconstructing the architecture of the primary tissue and organs. Currently, there are several strategies to create three-dimensional (3D) tumor systems using (i) surgically resected patient tissue (PDTOs, patient-derived tumor organoids) or (ii) single tumor cells circulating in the patient’s blood. Successful application of 3D tumor models obtained by co-culturing autologous tumor organoids (PDTOs) and peripheral blood lymphocytes have been demonstrated in a number of studies. Such models simulate a 3D tumor architecture in vivo and contain all cell types characteristic of this tissue, including immune system cells and stem cells. Components of the tumor microenvironment, such as fibroblasts and immune system cells, affect tumor growth and its drug resistance. In this review, we analyzed the evolution of tumor models from two-dimensional (2D) cell cultures and laboratory animals to 3D tissue-specific tumor organoids, their significance in identifying mechanisms of antitumor response and drug resistance, and use of these models in drug screening and development of precision methods in cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

AdSC:

adult stem cell

CIN:

chromosomal instability

CTCs:

circulating tumor cells

CRISPR:

clustered regularly interspaced short palindromic repeats

CTLA-4:

cytotoxic T lymphocyte-associated antigen 4

EGFR:

epidermal growth factor receptor

ECM:

extracellular matrix

iPSC:

induced pluripotent stem cell

PDTO:

patient-derived tumor organoid

PDX:

patient-derived xenograft

References

  1. Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, D. M., Piñeros, M., Znaor, A., and Bray, F. (2021) Cancer statistics for the year 2020: An overview, Int. J. Cancer, 149, 778-789, https://doi.org/10.1002/ijc.33588.

    Article  CAS  Google Scholar 

  2. Chen, A., Neuwirth, I., and Herndler-Brandstetter, D. (2023) Modeling the tumor microenvironment and cancer immunotherapy in next-generation humanized mice, Cancers (Basel), 15, 2989, https://doi.org/10.3390/cancers15112989.

    Article  CAS  PubMed  Google Scholar 

  3. Dutta, D., Heo, I., and Clevers, H. (2017) Disease modeling in stem cell-derived 3D organoid systems, Trends Mol. Med., 23, 393-410, https://doi.org/10.1016/j.molmed.2017.02.007.

    Article  CAS  PubMed  Google Scholar 

  4. Xiao, Y., and Yu, D. (2021) Tumor microenvironment as a therapeutic target in cancer, Pharmacol. Ther., 221, 107753, https://doi.org/10.1016/j.pharmthera.2020.107753.

    Article  CAS  PubMed  Google Scholar 

  5. Xia, T., Du, W., Chen, X., and Zhang, Y. (2021) Organoid models of the tumor microenvironment and their applications, J. Cell. Mol. Med., 25, 5829-5841, https://doi.org/10.1111/jcmm.16578.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhao, J., Fong, A., Seow, S. V., and Toh, H. C. (2023) Organoids as an enabler of precision immuno-oncology, Cells, 12, 1165, https://doi.org/10.3390/cells12081165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Napoli, G. C., Figg, W. D., and Chau, C. H. (2022) Functional drug screening in the era of precision medicine, Front. Med. (Lausanne), 9, 912641, https://doi.org/10.3389/fmed.2022.912641.

    Article  PubMed  Google Scholar 

  8. Brown, J. M. (1997) NCI’s anticancer drug screening program may not be selecting for clinically active compounds, Oncol. Res., 9, 213-215.

    CAS  PubMed  ADS  Google Scholar 

  9. Dahodwala, H., and Lee, K. H. (2019) The fickle CHO: a review of the causes, implications, and potential alleviation of the CHO cell line instability problem, Curr. Opin. Biotechnol., 60, 128-137, https://doi.org/10.1016/j.copbio.2019.01.011.

    Article  CAS  PubMed  Google Scholar 

  10. Bakhoum, S. F., Ngo, B., Laughney, A. M., Cavallo, J. A., Murphy, C. J., Ly, P., Shah, P., Sriram, R. K., Watkins, T. B. K., Taunk, N. K., et al. (2018) Chromosomal instability drives metastasis through a cytosolic DNA response, Nature, 553, 467-472, https://doi.org/10.1038/nature25432.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. Wu, S., Bafna, V., Chang, H. Y., and Mischel, P. S. (2022) Extrachromosomal DNA: an emerging hallmark in human cancer, Annu. Rev. Pathol., 17, 367-386, https://doi.org/10.1146/annurev-pathmechdis-051821-114223.

    Article  CAS  PubMed  Google Scholar 

  12. He, J., Huang, Z., Han, L., Gong, Y., and Xie, C. (2021) Mechanisms and management of 3rd-generation EGFR-TKI resistance in advanced non-small cell lung cancer (review), Int. J. Oncol., 59, 90, https://doi.org/10.3892/ijo.2021.5270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hirano, T., Yasuda, H., Tani, T., Hamamoto, J., Oashi, A., Ishioka, K., Arai, D., Nukaga, S., Miyawaki, M., Kawada, I., et al. (2015) In vitro modeling to determine mutation specificity of EGFR tyrosine kinase inhibitors against clinically relevant EGFR mutants in non-small-cell lung cancer, Oncotarget, 6, 38789-38803, https://doi.org/10.18632/oncotarget.5887.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Huo, K.-G., D’Arcangelo, E., and Tsao, M.-S. (2020) Patient-derived cell line, xenograft and organoid models in lung cancer therapy, Transl. Lung Cancer Res., 9, 2214-2232, https://doi.org/10.21037/tlcr-20-154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A. A., Kim, S., Wilson, C. J., Lehár, J., Kryukov, G. V., Sonkin, D., et al. (2012) The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity, Nature, 483, 603-607, https://doi.org/10.1038/nature11003.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Garnett, M. J., Edelman, E. J., Heidorn, S. J., Greenman, C. D., Dastur, A., Lau, K. W., Greninger, P., Thompson, I. R., Luo, X., Soares, J., et al. (2012) Systematic identification of genomic markers of drug sensitivity in cancer cells, Nature, 483, 570-575, https://doi.org/10.1038/nature11005.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Yang, W., Soares, J., Greninger, P., Edelman, E. J., Lightfoot, H., Forbes, S., Bindal, N., Beare, D., Smith, J. A., Thompson, I. R., et al. (2012) Genomics of drug sensitivity in cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells, Nucleic Acids Res., 41, 955-961, https://doi.org/10.1093/nar/gks1111.

    Article  CAS  Google Scholar 

  18. Iorio, F., Knijnenburg, T. A., Vis, D. J., Bignell, G. R., Menden, M. P., Schubert, M., Aben, N., Gonçalves, E., Barthorpe, S., Lightfoot, H., et al. (2016) A landscape of pharmacogenomic interactions in cancer, Cell, 166, 740-754, https://doi.org/10.1016/j.cell.2016.06.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Basu, A., Bodycombe, N. E., Cheah, J. H., Price, E. V., Liu, K., Schaefer, G. I., Ebright, R. Y., Stewart, M. L., Ito, D., Wang, S., et al. (2013) An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules, Cell, 154, 1151-1161, https://doi.org/10.1016/j.cell.2013.08.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Haverty, P. M., Lin, E., Tan, J., Yu, Y., Lam, B., Lianoglou, S., Neve, R. M., Martin, S., Settleman, J., Yauch, R. L., et al. (2016) Reproducible pharmacogenomic profiling of cancer cell line panels, Nature, 533, 333-337, https://doi.org/10.1038/nature17987.

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Klijn, C., Durinck, S., Stawiski, E. W., Haverty, P. M., Jiang, Z., Liu, H., Degenhardt, J., Mayba, O., Gnad, F., Liu, J., et al. (2014) A comprehensive transcriptional portrait of human cancer cell lines, Nat. Biotechnol., 33, 306-312, https://doi.org/10.1038/nbt.3080.

    Article  CAS  PubMed  Google Scholar 

  22. Lamb, J., Crawford, E. D., Peck, D., Modell, J. W., Blat, I. C., Wrobel, M. J., Lerner, J., Brunet, J.-P., Subramanian, A., Ross, K. N., et al. (2006) The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease, Science, 313, 1929-1935, https://doi.org/10.1126/science.1132939.

    Article  CAS  PubMed  ADS  Google Scholar 

  23. Subramanian, A., Narayan, R., Corsello, S. M., Peck, D. D., Natoli, T. E., Lu, X., Gould, J., Davis, J. F., Tubelli, A. A., Asiedu, J. K., et al. (2017) A next generation connectivity map: L1000 platform and the first 1,000,000 profiles, Cell, 171, 1437-1452.e17, https://doi.org/10.1016/j.cell.2017.10.049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Berish, R. B., Ali, A. N., Telmer, P. G., Ronald, J. A., and Leong, H. S. (2018) Translational models of prostate cancer bone metastasis, Nat. Rev. Urol., 15, 403-421, https://doi.org/10.1038/s41585-018-0020-2.

    Article  CAS  PubMed  Google Scholar 

  25. Onaciu, A., Munteanu, R., Munteanu, V. C., Gulei, D., Raduly, L., Feder, R.-I., Pirlog, R., Atanasov, A. G., Korban, S. S., Irimie, A., et al. (2020) Spontaneous and induced animal models for cancer research, Diagnostics (Basel), 10, 660, https://doi.org/10.3390/diagnostics10090660.

    Article  CAS  PubMed  Google Scholar 

  26. Valcourt, D. M., Kapadia, C. H., Scully, M. A., Dang, M. N., and Day, E. S. (2020) Best practices for preclinical in vivo testing of cancer nanomedicines, Adv. Healthc. Mater., 9, e2000110, https://doi.org/10.1002/adhm.202000110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Santana-Krímskaya, S. E., Kawas, J. R., Zarate-Triviño, D. G., Ramos-Zayas, Y., Rodríguez-Padilla, C., and Franco-Molina, M. A. (2022) Orthotopic and heterotopic triple negative breast cancer preclinical murine models: A tumor microenvironment comparative, Res. Vet. Sci., 152, 364-371, https://doi.org/10.1016/j.rvsc.2022.08.026.

    Article  CAS  PubMed  Google Scholar 

  28. Madonna, M. C., Duer, J. E., Lee, J. V., Williams, J., Avsaroglu, B., Zhu, C., Deutsch, R., Wang, R., Crouch, B. T., Hirschey, M. D., et al. (2021) In vivo optical metabolic imaging of long-chain fatty acid uptake in orthotopic models of triple-negative breast cancer, Cancers (Basel), 13, 148, https://doi.org/10.3390/cancers13010148.

    Article  CAS  PubMed  Google Scholar 

  29. Hagens, M. J., Oprea-Lager, D. E., Vis, A. N., Wondergem, M., Donswijk, M. L., Meijer, D., Emmett, L., van Leeuwen, P. J., and van der Poel, H. G. (2022) Reproducibility of PSMA PET/CT Imaging for primary staging of treatment-naïve prostate cancer patients depends on the applied radiotracer: a retrospective study, J. Nucl. Med., 63, 1531-1536, https://doi.org/10.2967/jnumed.121.263139.

    Article  CAS  PubMed  Google Scholar 

  30. Schmidt, K. M., Geissler, E. K., and Lang, S. A. (2016) Subcutaneous murine xenograft models: a critical tool for studying human tumor growth and angiogenesis in vivo, Methods Mol. Biol., 1464, 129-137, https://doi.org/10.1007/978-1-4939-3999-2_12.

    Article  CAS  PubMed  Google Scholar 

  31. Sobczuk, P., Brodziak, A., Khan, M. I., Chhabra, S., Fiedorowicz, M., Wełniak-Kamińska, M., Synoradzki, K., Bartnik, E., Cudnoch-Jędrzejewska, A., and Czarnecka, A. M. (2020) Choosing the right animal model for renal cancer research, Transl. Oncol., 13, 100745, https://doi.org/10.1016/j.tranon.2020.100745.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zheng, H., Xue, H., and Yun, W.-J. (2023) An overview of mouse models of hepatocellular carcinoma, Infect. Agent. Cancer, 18, 49, https://doi.org/10.1186/s13027-023-00524-9.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zherdeva, V., Kazachkina, N. I., Shcheslavskiy, V., and Savitsky, A. P. (2018) Long-term fluorescence lifetime imaging of a genetically encoded sensor for caspase-3 activity in mouse tumor xenografts, J. Biomed. Opt., 23, 1-11, https://doi.org/10.1117/1.JBO.23.3.035002.

    Article  PubMed  Google Scholar 

  34. Momcilovic, M., Jones, A., Bailey, S. T., Waldmann, C. M., Li, R., Lee, J. T., Abdelhady, G., Gomez, A., Holloway, T., Schmid, E., et al. (2019) In vivo imaging of mitochondrial membrane potential in non-small-cell lung cancer, Nature, 575, 380-384, https://doi.org/10.1038/s41586-019-1715-0.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  35. Shirmanova, M. V., Druzhkova, I. N., Lukina, M. M., Matlashov, M. E., Belousov, V. V., Snopova, L. B., Prodanetz, N. N., Dudenkova, V. V., Lukyanov, S. A., and Zagaynova, E. V. (2015) Intracellular pH imaging in cancer cells in vitro and tumors in vivo using the new genetically encoded sensor SypHer2, Biochim. Biophys. Acta, 1850, 1905-1911, https://doi.org/10.1016/j.bbagen.2015.05.001.

    Article  CAS  PubMed  Google Scholar 

  36. Shirshin, E. A., Shirmanova, M. V., Gayer, A. V., Lukina, M. M., Nikonova, E. E., Yakimov, B. P., Budylin, G. S., Dudenkova, V. V., Ignatova, N. I., Komarov, D. V., et al. (2022) Label-free sensing of cells with fluorescence lifetime imaging: The quest for metabolic heterogeneity, Proc. Natl. Acad. Sci. USA, 119, e2118241119, https://doi.org/10.1073/pnas.2118241119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kazachkina, N. I., Zherdeva, V. V., Meerovich, I. G., Saydasheva, A. N., Solovyev, I. D., Tuchina, D. K., Savitsky, A. P., Tuchin, V. V., and Bogdanov, A. A., Jr. (2022) MR and fluorescence imaging of gadobutrol-induced optical clearing of red fluorescent protein signal in an in vivo cancer model, NMR Biomed., 35, e4708, https://doi.org/10.1002/nbm.4708.

    Article  CAS  PubMed  Google Scholar 

  38. Maloshenok, L., Abushinova, G., Kazachkina, N., Bogdanov, A., Jr., and Zherdeva, V. (2023) Tet-regulated expression and optical clearing for in vivo visualization of genetically encoded chimeric dCas9/fluorescent protein probes, Materials (Basel), 16, 940, https://doi.org/10.3390/ma16030940.

    Article  CAS  PubMed  ADS  Google Scholar 

  39. Nicolson, F., Andreiuk, B., Andreou, C., Hsu, H.-T., Rudder, S., and Kircher, M. F. (2019) Non-invasive in vivo imaging of cancer using surface-enhanced spatially offset Raman spectroscopy (SESORS), Theranostics, 9, 5899-5913, https://doi.org/10.7150/thno.36321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xu, X., An, H., Zhang, D., Tao, H., Dou, Y., Li, X., Huang, J., and Zhang, J. (2019) A self-illuminating nanoparticle for inflammation imaging and cancer therapy, Sci. Adv., 5, eaat2953, https://doi.org/10.1126/sciadv.aat2953.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  41. Chen, L., Zuo, W., Xiao, Z., Jin, Q., Liu, J., Wu, L., Liu, N., and Zhu, X. (2021) A carrier-free metal-coordinated dual-photosensitizers nanotheranostic with glutathione-depletion for fluorescence/photoacoustic imaging-guided tumor phototherapy, J. Colloid Interface Sci., 600, 243-255, https://doi.org/10.1016/j.jcis.2021.04.131.

    Article  CAS  PubMed  ADS  Google Scholar 

  42. Mohiuddin, T. M., Zhang, C., Sheng, W., Al-Rawe, M., Zeppernick, F., Meinhold-Heerlein, I., and Hussain, A. F. (2023) Near infrared photoimmunotherapy: A review of recent progress and their target molecules for cancer therapy, Int. J. Mol. Sci., 24, 2655, https://doi.org/10.3390/ijms24032655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bezborodova, O. A., Alekseenko, I. V., Nemtsova, E. R., Pankratov, A. A., Filyukova, O. B., Yakubovskaya, R. I., Kostina, M. B., Potapov, V. K., and Sverdlov, E. D. (2018) The antitumor efficacy of a complex based on two-vector system for coexpression of the suicide gene Fcu1 and Cre recombinase, Dokl. Biochem. Biophys., 483, 326-328, https://doi.org/10.1134/S1607672918060091.

    Article  CAS  PubMed  Google Scholar 

  44. Johnson, J. I., Decker, S., Zaharevitz, D., Rubinstein, L. V., Venditti, J. M., Schepartz, S., Kalyandrug, S., Christian, M., Arbuck, S., Hollingshead, M., et al. (2001) Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials, Br. J. Cancer, 84, 1424-1431, https://doi.org/10.1054/bjoc.2001.1796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Doctor, A., Seifert, V., Ullrich, M., Hauser, S., and Pietzsch, J. (2020) Three-dimensional cell culture systems in radiopharmaceutical cancer research, Cancers (Basel), 12, 2765, https://doi.org/10.3390/cancers12102765.

    Article  CAS  PubMed  Google Scholar 

  46. Inch, W. R., McCredie, J. A., and Sutherland, R. M. (1970) Growth of nodular carcinomas in rodents compared with multi-cell spheroids in tissue culture, Growth, 34, 271-282.

    CAS  PubMed  Google Scholar 

  47. Mehta, G., Hsiao, A. Y., Ingram, M., Luker, G. D., and Takayama, S. (2012) Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy, J. Control. Release, 164, 192-204, https://doi.org/10.1016/j.jconrel.2012.04.045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ward, C., Meehan, J., Gray, M. E., Murray, A. F., Argyle, D. J., Kunkler, I. H., and Langdon, S. P. (2020) The impact of tumour pH on cancer progression: strategies for clinical intervention, Explor. Targeted Anti Tumor Ther., 1, 71-100, https://doi.org/10.37349/etat.2020.00005.

    Article  Google Scholar 

  49. Yamamoto, A., Huang, Y., Krajina, B. A., McBirney, M., Doak, A. E., Qu, S., Wang, C. L., Haffner, M. C., and Cheung, K. J. (2023) Metastasis from the tumor interior and necrotic core formation are regulated by breast cancer-derived angiopoietin-like 7, Proc. Natl. Acad. Sci. USA, 120, e2214888120, https://doi.org/10.1073/pnas.2214888120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tucker, L. H., Hamm, G. R., Sargeant, R. J. E., Goodwin, R. J. A., Mackay, C. L., Campbell, C. J., and Clarke, D. J. (2019) Untargeted metabolite mapping in 3D cell culture models using high spectral resolution FT-ICR mass spectrometry imaging, Anal. Chem., 91, 9522-9529, https://doi.org/10.1021/acs.analchem.9b00661.

    Article  CAS  PubMed  Google Scholar 

  51. Zagaynova, E. V., Druzhkova, I. N., Mishina, N. M., Ignatova, N. I., Dudenkova, V. V., and Shirmanova, M. V. (2017) Imaging of intracellular pH in tumor spheroids using genetically encoded sensor SypHer2, Adv. Exp. Med. Biol., 1035, 105-119, https://doi.org/10.1007/978-3-319-67358-5_7.

    Article  CAS  PubMed  Google Scholar 

  52. Kozin, S., and Gerweck, L. (1998) Cytotoxicity of weak electrolytes after the adaptation of cells to low pH: role of the transmembrane pH gradient, Br. J. Cancer, 77, 1580-1585, https://doi.org/10.1038/bjc.1998.260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. El Harane, S., Zidi, B., El Harane, N., Krause, K.-H., Matthes, T., and Preynat-Seauve, O. (2023) Cancer spheroids and organoids as novel tools for research and therapy: state of the art and challenges to guide precision medicine, Cells, 12, 1001, https://doi.org/10.3390/cells12071001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Antonelli, F. (2023) 3D cell models in radiobiology: Improving the predictive value of in vitro research, Int. J. Mol. Sci., 24, 10620, https://doi.org/10.3390/ijms241310620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Arutyunyan, I. V., Soboleva, A. G., Kovtunov, E. A., Kosyreva, A. M., Kudelkina, V. V., Alekseeva, A. I., Elchaninov, A. V., Jumaniyazova, E. D., Goldshtein, D. V., Bolshakova, G. B., et al. (2023) Gene expression profile of 3D spheroids in comparison with 2D cell cultures and tissue strains of diffuse high-grade glioma, Bull. Exp. Biol. Med., 175, 576-584, https://doi.org/10.1007/s10517-023-05906-y.

    Article  CAS  PubMed  Google Scholar 

  56. L’Espérance, S., Bachvarova, M., Tetu, B., Mes-Masson, A.-M., and Bachvarov, D. (2008) Global gene expression analysis of early response to chemotherapy treatment in ovarian cancer spheroids, BMC Genomics, 9, 99, https://doi.org/10.1186/1471-2164-9-99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Firuzi, O., Che, P. P., El Hassouni, B., Buijs, M., Coppola, S., Löhr, M., Funel, N., Heuchel, R., Carnevale, I., Schmidt, T., et al. (2019) Role of c-MET inhibitors in overcoming drug resistance in spheroid models of primary human pancreatic cancer and stellate cells, Cancers (Basel), 11, 638, https://doi.org/10.3390/cancers11050638.

    Article  CAS  PubMed  Google Scholar 

  58. Kalluri, R., and Zeisberg, M. (2006) Fibroblasts in cancer, Nat. Rev. Cancer, 6, 392-401, https://doi.org/10.1038/nrc1877.

    Article  CAS  PubMed  Google Scholar 

  59. Jeong, S.-Y., Lee, J.-H., Shin, Y., Chung, S., and Kuh, H.-J. (2016) Co-culture of tumor spheroids and fibroblasts in a collagen matrix-incorporated microfluidic chip mimics reciprocal activation in solid tumor microenvironment, PLoS One, 11, e0159013, https://doi.org/10.1371/journal.pone.0159013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ou, L., Wang, H., Huang, H., Zhou, Z., Lin, Q., Guo, Y., Mitchell, T., Huang, A. C., Karakousis, G., Schuchter, L., et al. (2022) Preclinical platforms to study therapeutic efficacy of human γδ T cells, Clin. Transl. Med., 12, e814, https://doi.org/10.1002/ctm2.814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mittler, F., Obeïd, P., Rulina, A. V., Haguet, V., Gidrol, X., and Balakirev, M. Y. (2017) High-content monitoring of drug effects in a 3D spheroid model, Front. Oncol., 7, 293, https://doi.org/10.3389/fonc.2017.00293.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Magalhães, N. D., Liaw, L.-H. L., Berns, M., Cristini, V., Chen, Z., Stupack, D., and Lowengrub, J. (2010) Applications of a new In vivo tumor spheroid based shell-less chorioallantoic membrane 3-D model in bioengineering research, J. Biomed. Sci. Eng., 3, 20-26, https://doi.org/10.4236/jbise.2010.31003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Szade, K., Zukowska, M., Szade, A., Collet, G., Kloska, D., Kieda, C., Jozkowicz, A., and Dulak, J. (2015) Spheroid-plug model as a tool to study tumor development, angiogenesis, and heterogeneity in vivo, Tumour Biol., 37, 2481-2496, https://doi.org/10.1007/s13277-015-4065-z.

    Article  CAS  PubMed  Google Scholar 

  64. Farrell, C. L., Stewart, P. A., and Del Maestro, R. F. (1987) A new glioma model in rat: the C6 spheroid implantation technique permeability and vascular characterization, J. Neurooncol., 4, 403-415, https://doi.org/10.1007/BF00195612.

    Article  CAS  PubMed  Google Scholar 

  65. Takebe, T., Imai, R., and Ono, S. (2018) The current status of drug discovery and development as originated in United States academia: the influence of industrial and academic collaboration on drug discovery and development, Clin. Transl. Sci., 11, 597-606, https://doi.org/10.1111/cts.12577.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zitvogel, L., Pitt, J. M., Daillère, R., Smyth, M. J., and Kroemer, G. (2016) Mouse models in oncoimmunology, Nat. Rev. Cancer, 16, 759-773, https://doi.org/10.1038/nrc.2016.91.

    Article  CAS  PubMed  Google Scholar 

  67. Ireson, C. R., Alavijeh, M. S., Palmer, A. M., Fowler, E. R., and Jones, H. J. (2019) The role of mouse tumour models in the discovery and development of anticancer drugs, Br. J. Cancer, 121, 101-108, https://doi.org/10.1038/s41416-019-0495-5.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Rygaard, J., and Poulsen, C. O. (1969) Heterotransplantation of a human malignant tumour to “Nude” mice, Acta Pathol. Microbiol. Scand., 77, 758-760, https://doi.org/10.1111/j.1699-0463.1969.tb04520.x.

    Article  CAS  PubMed  Google Scholar 

  69. Cho, S. Y., Kang, W., Han, J. Y., Min, S., Kang, J., Lee, A., Kwon, J. Y., Lee, C., and Park, H. (2016) An integrative approach to precision cancer medicine using patient-derived xenografts, Mol. Cells, 39, 77-86, https://doi.org/10.14348/molcells.2016.2350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Koga, Y., and Ochiai, A. (2019) Systematic review of patient-derived xenograft models for preclinical studies of anti-cancer drugs in solid tumors, Cells, 8, 418, https://doi.org/10.3390/cells8050418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chuprin, J., Buettner, H., Seedhom, M. O., Greiner, D. L., Keck, J. G., Ishikawa, F., Shultz, L. D., and Brehm, M. A. (2023) Humanized mouse models for immuno-oncology research, Nat. Rev. Clin. Oncol., 20, 192-206, https://doi.org/10.1038/s41571-022-00721-2.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Walsh, N. C., Kenney, L. L., Jangalwe, S., Aryee, K.-E., Greiner, D. L., Brehm, M. A., and Shultz, L. D. (2017) Humanized mouse models of clinical disease, Annu. Rev. Pathol., 12, 187-215, https://doi.org/10.1146/annurev-pathol-052016-100332.

    Article  CAS  PubMed  Google Scholar 

  73. Morton, C. L., and Houghton, P. J. (2007) Establishment of human tumor xenografts in immunodeficient mice, Nat. Protoc., 2, 247-250, https://doi.org/10.1038/nprot.2007.25.

    Article  CAS  PubMed  Google Scholar 

  74. Annaratone, L., De Palma, G., Bonizzi, G., Sapino, A., Botti, G., Berrino, E., Mannelli, C., Arcella, P., Di Martino, S., Steffan, A., et al. (2021) Basic principles of biobanking: from biological samples to precision medicine for patients, Virchows Arch., 479, 233-246, https://doi.org/10.1007/s00428-021-03151-0.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Van Hemelryk, A., Erkens-Schulze, S., Lam, L., Stuurman, D., de Ridder, C. M. A., French, P. J., van Royen, M. E., and van Weerden, W. M. (2022) Standardization of viability assays and high-content live-cell imaging protocols for large-scale drug testing in prostate cancer PDX-derived organoids, Eur. J. Cancer, 174, S42, https://doi.org/10.1016/S0959-8049(22)00913-3.

    Article  Google Scholar 

  76. Küçükköse, E., Heesters, B. A., Villaudy, J., Verheem, A., Cercel, M., van Hal, S., Boj, S. F., Borel Rinkes, I. H. M., Punt, C. J. A., Roodhart, J. M. L., et al. (2022) Modeling resistance of colorectal peritoneal metastases to immune checkpoint blockade in humanized mice, J. Immunother. Cancer, 10, e005345, https://doi.org/10.1136/jitc-2022-005345.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zhao, X., Liu, Z., Yu, L., Zhang, Y., Baxter, P., Voicu, H., Gurusiddappa, S., Luan, J., Su, J. M., Leung, H. E., et al. (2012) Global gene expression profiling confirms the molecular fidelity of primary tumor-based orthotopic xenograft mouse models of medulloblastoma, Neuro Oncol., 14, 574-583, https://doi.org/10.1093/neuonc/nos061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Garrido-Laguna, I., Uson, M., Rajeshkumar, N. V., Tan, A. C., de Oliveira, E., Karikari, C., Villaroel, M. C., Salomon, A., Taylor, G., Sharma, R., et al. (2011) Tumor engraftment in nude mice and enrichment in stroma-related gene pathways predict poor survival and resistance to gemcitabine in patients with pancreatic cancer, Clin. Cancer Res., 17, 5793-5800, https://doi.org/10.1158/1078-0432.CCR-11-0341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dong, Y., Manley, B. J., Becerra, M. F., Redzematovic, A., Casuscelli, J., Tennenbaum, D. M., Reznik, E., Han, S., Benfante, N., Chen, Y.-B., et al. (2017) Tumor xenografts of human clear cell renal cell carcinoma but not corresponding cell lines recapitulate clinical response to sunitinib: feasibility of using biopsy samples, Eur. Urol. Focus, 3, 590-598, https://doi.org/10.1016/j.euf.2016.08.005.

    Article  PubMed  Google Scholar 

  80. Marshall, L. J., Triunfol, M., and Seidle, T. (2020) Patient-derived xenograft vs. organoids: a preliminary analysis of cancer research output, funding and human health impact in 2014-2019, Animals, 10, 1923, https://doi.org/10.3390/ani10101923.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Sato, T., Vries, R. G., Snippert, H. J., van de Wetering, M., Barker, N., Stange, D. E., van Es, J. H., Abo, A., Kujala, P., Peters, P. J., et al. (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche, Nature, 459, 262-265, https://doi.org/10.1038/nature07935.

    Article  CAS  PubMed  ADS  Google Scholar 

  82. Sato, T., Stange, D. E., Ferrante, M., Vries, R. G. J., van Es, J. H., van den Brink, S., van Houdt, W. J., Pronk, A., van Gorp, J., Siersema, P. D., et al. (2011) Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium, Gastroenterology, 141, 1762-1772, https://doi.org/10.1053/j.gastro.2011.07.050.

    Article  CAS  PubMed  Google Scholar 

  83. Porter, R. J., Murray, G. I., and McLean, M. H. (2020) Current concepts in tumour-derived organoids, Br. J. Cancer, 123, 1209-1218, https://doi.org/10.1038/s41416-020-0993-5.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Di Baldassarre, A., Cimetta, E., Bollini, S., Gaggi, G., and Ghinassi, B. (2018) Human-induced pluripotent stem cell technology and cardiomyocyte generation: progress and clinical applications, Cells, 25, 48, https://doi.org/10.3390/cells7060048.

    Article  CAS  Google Scholar 

  85. Zhang, Y., Lu, A., Zhuang, Z., Zhang, S., Liu, S., Chen, H., Yang, X., and Wang, Z. (2023) Can organoid model reveal a key role of extracellular vesicles in tumors? A comprehensive review of the literature, Int. J. Nanomedicine, 18, 5511-5527, https://doi.org/10.2147/IJN.S424737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tang, X.-Y., Wu, S., Wang, D., Chu, C., Hong, Y., Tao, M., Hu, H., Xu, M., Guo, X., and Liu, Y. (2022) Human organoids in basic research and clinical applications, Signal Transduct. Target. Ther., 7, 168, https://doi.org/10.1038/s41392-022-01024-9.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kondratyeva, E., Efremova, A., Melyanovskaya, Y., Voronkova, A., Polyakov, A., Bulatenko, N., Adyan, T., Sherman, V., Kovalskaia, V., Petrova, N., et al. (2022) Evaluation of the complex p.[Leu467Phe;Phe508del] CFTR allele in the intestinal organoids model: implications for therapy, Int. J. Mol. Sci., 23, 10377, https://doi.org/10.3390/ijms231810377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Demchenko, A., Kondrateva, E., Tabakov, V., Efremova, A., Salikhova, D., Bukharova, T., Goldshtein, D., Balyasin, M., Bulatenko, N., Amelina, E., et al. (2022) Airway and lung organoids from human induced pluripotent stem cells can be used to assess CFTR conductance, Int. J. Mol. Sci., 24, 6293, https://doi.org/10.3390/ijms24076293.

    Article  CAS  Google Scholar 

  89. Ma, X., Wang, Q., Li, G., Li, H., Xu, S., and Pang, D. (2024) Cancer organoids: a platform in basic and translational research, Genes Dis., 11, 614-632, https://doi.org/10.1016/j.gendis.2023.02.052.

    Article  CAS  PubMed  Google Scholar 

  90. Qian, L., and Tcw, J. (2021) Human iPSCs-based modeling of central nerve system disorders for drug discovery, Int. J. Mol. Sci., 22, 1203, https://doi.org/10.3390/ijms22031203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Eremeev, A., Belikova, L., Ruchko, E., Volovikov, E., Zubkova, O., Emelin, A., Deev, R., Lebedeva, O., Bogomazova, A., and Lagarkova, M. (2021) Brain organoid generation from induced pluripotent stem cells in home-made mini bioreactors, J. Vis. Exp., 178, e62987, https://doi.org/10.3791/62987.

    Article  CAS  Google Scholar 

  92. Shuel, S. L. (2022) Targeted cancer therapies: clinical pearls for primary care, Can. Fam. Physician, 68, 515-518, https://doi.org/10.46747/cfp.6807515.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Vanneman, M., and Dranoff, G. (2012) Combining immunotherapy and targeted therapies in cancer treatment, Nat. Rev. Cancer, 12, 237-251, https://doi.org/10.1038/nrc3237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Waldman, A. D., Fritz, J. M., and Lenardo, M. J. (2020) A guide to cancer immunotherapy: from T cell basic science to clinical practice, Nat. Rev. Immunol., 20, 651-668, https://doi.org/10.1038/s41577-020-0306-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Munagala, R., Aqil, F., and Gupta, R. C. (2011) Promising molecular targeted therapies in breast cancer, Indian J. Pharmacol., 43, 236-245, https://doi.org/10.4103/0253-7613.81497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Peng, F., Liao, M., Qin, R., Zhu, S., Peng, C., Fu, L., Chen, Y., and Han, B. (2022) Regulated cell death (RCD) in cancer: key pathways and targeted therapies, Signal Transduct. Target. Ther., 7, 286, https://doi.org/10.1038/s41392-022-01110-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wilkes, G. M. (2018) Targeted therapy: Attacking cancer with molecular and immunological targeted agents, Asia Pac. J. Oncol. Nurs., 5, 137-155, https://doi.org/10.4103/apjon.apjon_79_17.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Ashfaq, R. (2012) Molecular profiling for personalized cancer care, Clin. Exp. Metastasis, 29, 653-655, https://doi.org/10.1007/s10585-012-9483-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cheng, F., Su, L., and Qian, C. (2016) Circulating tumor DNA: a promising biomarker in the liquid biopsy of cancer, Oncotarget, 7, 48832-48841, https://doi.org/10.18632/oncotarget.9453.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Emran, T. B., Shahriar, A., Mahmud, A. R., Rahman, T., Abir, M. H., Faijanur-Rob Siddiquee, M., Ahmed, H., Rahman, N., Nainu, F., Wahyudin, E., et al. (2022) Multidrug resistance in cancer: understanding molecular mechanisms, immunoprevention and therapeutic approaches, Front. Oncol., 12, 891652, https://doi.org/10.3389/fonc.2022.891652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Uramoto, H., and Tanaka, F. (2014) Recurrence after surgery in patients with NSCLC, Transl. Lung Cancer Res., 3, 242-249, https://doi.org/10.3978/j.issn.2218-6751.2013.12.05.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Meads, M. B., Gatenby, R. A., and Dalton, W. S. (2009) Environment-mediated drug resistance: a major contributor to minimal residual disease, Nat. Rev. Cancer, 9, 665-674, https://doi.org/10.1038/nrc2714.

    Article  CAS  PubMed  Google Scholar 

  103. Sridharan, S., Macias, V., Tangella, K., Melamed, J., Dube, E., Kong, M. X., Kajdacsy-Balla, A., and Popescu, G. (2016) Prediction of prostate cancer recurrence using quantitative phase imaging: validation on a general population, Sci. Rep., 6, 33818, https://doi.org/10.1038/srep33818.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  104. Harada, K., and Sakamoto, N. (2022) Cancer organoid applications to investigate chemotherapy resistance, Front. Mol. Biosci., 9, 1067207, https://doi.org/10.3389/fmolb.2022.1067207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. De Poel, E., Spelier, S., Hagemeijer, M. C., van Mourik, P., Suen, S. W. F., Vonk, A. M., Brunsveld, J. E., Ithakisiou, G. N., Kruisselbrink, E., Oppelaar, H., et al. (2023) FDA-approved drug screening in patient-derived organoids demonstrates potential of drug repurposing for rare cystic fibrosis genotypes, J. Cyst. Fibros., 22, 548-559, https://doi.org/10.1016/j.jcf.2023.03.004.

    Article  CAS  PubMed  Google Scholar 

  106. Wen, J., Liu, F., Cheng, Q., Weygant, N., Liang, X., Fan, F., Li, C., Zhang, L., and Liu, Z. (2023) Applications of organoid technology to brain tumors, CNS Neurosci. Ther., 29, 2725-2743, https://doi.org/10.1111/cns.14272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Miserocchi, G., Spadazzi, C., Calpona, S., De Rosa, F., Usai, A., De Vita, A., Liverani, C., Cocchi, C., Vanni, S., Calabrese, C., et al. (2022) Precision medicine in head and neck cancers: Genomic and preclinical approaches, J. Pers. Med., 12, 854, https://doi.org/10.3390/jpm12060854.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Yu, Y., Zhu, Y., Xiao, Z., Chen, Y., Chang, X., Liu, Y., Tang, Q., and Zhang, H. (2022) The pivotal application of patient-derived organoid biobanks for personalized treatment of gastrointestinal cancers, Biomark. Res., 10, 73, https://doi.org/10.1186/s40364-022-00421-0.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Chen, J., and Na, F. (2022) Organoid technology and applications in lung diseases: Models, mechanism research and therapy opportunities, Front. Bioeng. Biotechnol., 10, 1066869, https://doi.org/10.3389/fbioe.2022.1066869.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Song, T., Kong, B., Liu, R., Luo, Y., Wang, Y., and Zhao, Y. (2023) Bioengineering approaches for the pancreatic tumor organoids research and application, Adv. Healthc. Mater., 13, e2300984, https://doi.org/10.1002/adhm.202300984.

    Article  CAS  PubMed  Google Scholar 

  111. Marcolin, J. C., Lichtenfels, M., da Silva, C. A., and de Farias, C. B. (2023) Gynecologic and breast cancers: what’s new in chemoresistance and chemosensitivity tests? Curr. Probl. Cancer, 47, 100996, https://doi.org/10.1016/j.currproblcancer.2023.100996.

    Article  PubMed  Google Scholar 

  112. Kumar, S., Raina, M., Tankay, K., and Ingle, G. M. (2023) Patient-derived organoids in ovarian cancer: Current research and its clinical relevance, Biochem. Pharmacol., 213, 115589, https://doi.org/10.1016/j.bcp.2023.115589.

    Article  CAS  PubMed  Google Scholar 

  113. Wang, B., Xue, Y., and Zhai, W. (2022) Integration of tumor microenvironment in patient-derived organoid models help define precision medicine of renal cell carcinoma, Front. Immunol., 13, 902060, https://doi.org/10.3389/fimmu.2022.902060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Medle, B., Sjödahl, G., Eriksson, P., Liedberg, F., Höglund, M., and Bernardo, C. (2022) Patient-derived bladder cancer organoid models in tumor biology and drug testing: a systematic review, Cancers (Basel), 14, 2062, https://doi.org/10.3390/cancers14092062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Pamarthy, S., and Sabaawy, H. E. (2021) Patient derived organoids in prostate cancer: improving therapeutic efficacy in precision medicine, Mol. Cancer, 20, 125, https://doi.org/10.1186/s12943-021-01426-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhu, J., Ji, L., Chen, Y., Li, H., Huang, M., Dai, Z., Wang, J., Xiang, D., Fu, G., Lei, Z., et al. (2023) Organoids and organs-on-chips: insights into predicting the efficacy of systemic treatment in colorectal cancer, Cell Death Discov., 9, 72, https://doi.org/10.1038/s41420-023-01354-9.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Xu, S., Tan, S., and Guo, L. (2023) Patient-derived organoids as a promising tool for multimodal management of sarcomas, Cancers (Basel), 15, 4339, https://doi.org/10.3390/cancers15174339.

    Article  CAS  PubMed  Google Scholar 

  118. Wuputra, K., Ku, C.-C., Kato, K., Wu, D.-C., Saito, S., and Yokoyama, K. K. (2021) Translational models of 3-D organoids and cancer stem cells in gastric cancer research, Stem Cell Res. Ther., 12, 492, https://doi.org/10.1186/s13287-021-02521-4.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Wuputra, K., Ku, C.-C., Wu, D.-C., Lin, Y.-C., Saito, S., and Yokoyama, K. K. (2020) Prevention of tumor risk associated with the reprogramming of human pluripotent stem cells, J. Exp. Clin. Cancer Res., 39, 100, https://doi.org/10.1186/s13046-020-01584-0.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Hepburn, A. C., Steele, R. E., Veeratterapillay, R., Wilson, L., Kounatidou, E. E., Barnard, A., Berry, P., Cassidy, J. R., Moad, M., El-Sherif, A., et al. (2019) The induction of core pluripotency master regulators in cancers defines poor clinical outcomes and treatment resistance, Oncogene, 38, 4412-4424, https://doi.org/10.1038/s41388-019-0712-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Takahashi, K., and Yamanaka, S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell, 126, 663-676, https://doi.org/10.1016/j.cell.2006.07.024.

    Article  CAS  PubMed  Google Scholar 

  122. de Souza Fernandez, T., de Souza Fernandez, C., and Mencalha, A. L. (2013) Human induced pluripotent stem cells from basic research to potential clinical applications in cancer, BioMed Res. Int., 2013, 430290, https://doi.org/10.1155/2013/430290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kastner, C., Hendricks, A., Deinlein, H., Hankir, M., Germer, C.-T., Schmidt, S., and Wiegering, A. (2021) Organoid models for cancer research – from bed to bench side and back, Cancers (Basel), 13, 4812, https://doi.org/10.3390/cancers13194812.

    Article  CAS  PubMed  Google Scholar 

  124. Vivarelli, S., Candido, S., Caruso, G., Falzone, L., and Libra, M. (2020) Patient-derived tumor organoids for drug repositioning in cancer care: a promising approach in the era of tailored treatment, Cancers (Basel), 12, 3636, https://doi.org/10.3390/cancers12123636.

    Article  PubMed  Google Scholar 

  125. Yang, C., Xia, B.-R., Jin, W.-L., and Lou, G. (2019) Circulating tumor cells in precision oncology: clinical applications in liquid biopsy and 3D organoid model, Cancer Cell Int., 19, 341, https://doi.org/10.1186/s12935-019-1067-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wang, T., Tang, Y., Pan, W., Yan, B., Hao, Y., Zeng, Y., Chen, Z., Lan, J., Zhao, S., Deng, C., et al. (2023) Patient-derived tumor organoids can predict the progression-free survival of patients with stage IV colorectal cancer after surgery, Dis. Colon Rectum, 66, 733-743, https://doi.org/10.1097/DCR.0000000000002511.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Bergin, C. J., and Benoit, Y. D. (2022) Protocol for serial organoid formation assay using primary colorectal cancer tissues to evaluate cancer stem cell activity, STAR Protoc., 3, 101218, https://doi.org/10.1016/j.xpro.2022.101218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Urbischek, M., Rannikmae, H., Foets, T., Ravn, K., Hyvönen, M., and de la Roche, M. (2019) Organoid culture media formulated with growth factors of defined cellular activity, Sci. Rep., 9, 6193, https://doi.org/10.1038/s41598-019-42604-0.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  129. Yin, X., Mead, B. E., Safaee, H., Langer, R., Karp, J. M., and Levy, O. (2016) Engineering stem cell organoids, Cell Stem Cell, 18, 25-38, https://doi.org/10.1016/j.stem.2015.12.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Anderson, N. M., and Simon, M. C. (2020) The tumor microenvironment, Curr. Biol., 30, 921-925, https://doi.org/10.1016/j.cub.2020.06.081.

    Article  CAS  Google Scholar 

  131. Hutchinson, L., and Kirk, R. (2011) High drug attrition rates – where are we going wrong? Nat. Rev. Clin. Oncol., 8, 189-190, https://doi.org/10.1038/nrclinonc.2011.34.

    Article  PubMed  Google Scholar 

  132. Jin, M.-Z., and Jin, W.-L. (2020) The updated landscape of tumor microenvironment and drug repurposing, Signal Transduct. Target. Ther., 5, 166, https://doi.org/10.1038/s41392-020-00280-x.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Visalakshan, R. M., Lowrey, M. K., Sousa, M. G. C., Helms, H. R., Samiea, A., Schutt, C. E., Moreau, J. M., and Bertassoni, L. E. (2023) Opportunities and challenges to engineer 3D models of tumor-adaptive immune interactions, Front. Immunol., 14, 1162905, https://doi.org/10.3389/fimmu.2023.1162905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Feder-Mengus, C., Ghosh, S., Reschner, A., Martin, I., and Spagnoli, G. C. (2008) New dimensions in tumor immunology: what does 3D culture reveal? Trends Mol. Med., 14, 333-340, https://doi.org/10.1016/j.molmed.2008.06.001.

    Article  CAS  PubMed  Google Scholar 

  135. Cham, C. M., and Gajewski, T. F. (2005) Glucose availability regulates IFN-gamma production and p70S6 kinase activation in CD8+ effector T cells, J. Immunol., 174, 4670-4677, https://doi.org/10.4049/jimmunol.174.8.4670.

    Article  CAS  PubMed  Google Scholar 

  136. Gottfried, E., Kunz-Schughart, L. A., Ebner, S., Mueller-Klieser, W., Hoves, S., Andreesen, R., Mackensen, A., and Kreutz, M. (2006) Tumor-derived lactic acid modulates dendritic cell activation and antigen expression, Blood, 107, 2013-2021, https://doi.org/10.1182/blood-2005-05-1795.

    Article  CAS  PubMed  Google Scholar 

  137. Clinton, J., and McWilliams-Koeppen, P. (2018) Initiation, expansion, and cryopreservation of human primary tissue-derived normal and diseased organoids in embedded three-dimensional culture, Curr. Protoc. Cell Biol., 82, e66, https://doi.org/10.1002/cpcb.66.

    Article  CAS  PubMed  Google Scholar 

  138. Kenny, P. A., Lee, G. Y., Myers, C. A., Neve, R. M., Semeiks, J. R., Spellman, P. T., Lorenz, K., Lee, E. H., Barcellos-Hoff, M. H., Petersen, O. W., et al. (2007) The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression, Mol. Oncol., 1, 84-96, https://doi.org/10.1016/j.molonc.2007.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Xu, X., Gurski, L. A., Zhang, C., Harrington, D. A., Farach-Carson, M. C., and Jia, X. (2012) Recreating the tumor microenvironment in a bilayer, hyaluronic acid hydrogel construct for the growth of prostate cancer spheroids, Biomaterials, 33, 9049-9060, https://doi.org/10.1016/j.biomaterials.2012.08.061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Sieh, S., Lubik, A. A., Clements, J. A., Nelson, C. C., and Hutmacher, D. W. (2010) Interactions between human osteoblasts and prostate cancer cells in a novel 3D in vitro model, Organogenesis, 6, 181-188, https://doi.org/10.4161/org.6.3.12041.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Hutmacher, D. W., Loessner, D., Rizzi, S., Kaplan, D. L., Mooney, D. J., and Clements, J. A. (2010) Can tissue engineering concepts advance tumor biology research? Trends Biotechnol., 28, 125-133, https://doi.org/10.1016/j.tibtech.2009.12.001.

    Article  CAS  PubMed  Google Scholar 

  142. Sell, S. A., Wolfe, P. S., Garg, K., McCool, J. M., Rodriguez, I. A., and Bowlin, G. L. (2010) The use of in vivo polymers in tissue engineering: a focus on electrospun extracellular matrix analogues, Polymers, 2, 522-553, https://doi.org/10.3390/polym2040522.

    Article  CAS  Google Scholar 

  143. Giraudo, M. V., Di Francesco, D., Catoira, M. C., Cotella, D., Fusaro, L., and Boccafoschi, F. (2020) Angiogenic potential in biological hydrogels, Biomedicines, 8, 436, https://doi.org/10.3390/biomedicines8100436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Le Bao, C., Waller, H., Dellaquila, A., Peters, D., Lakey, J., Chaubet, F., and Simon-Yarza, T. (2022) Spatial-controlled coating of pro-angiogenic proteins on 3D porous hydrogels guides endothelial cell behavior, Int. J. Mol. Sci., 23, 14604, https://doi.org/10.3390/ijms232314604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Roudsari, L. C., Jeffs, S. E., Witt, A. S., Gill, B. J., and West, J. L. (2016) A 3D poly(ethylene glycol)-based tumor angiogenesis model to study the influence of vascular cells on lung tumor cell behavior, Sci. Rep., 6, 32726, https://doi.org/10.1038/srep32726.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  146. Trujillo-de Santiago, G., Flores-Garza, B. G., Tavares-Negrete, J. A., Lara-Mayorga, I. M., González-Gamboa, I., Zhang, Y. S., Rojas-Martínez, A., Ortiz-López, R., and Álvarez, M. M. (2019) The tumor-on-chip: recent advances in the development of microfluidic systems to recapitulate the physiology of solid tumors, Materials (Basel), 12, 2945, https://doi.org/10.3390/ma12182945.

    Article  CAS  PubMed  ADS  Google Scholar 

  147. Shin, K. (2022) Stem cells, organoids and their applications for human diseases: special issue of BMB Reports in 2023, BMB Rep., 56, 1, https://doi.org/10.5483/BMBRep.2022-0210.

    Article  PubMed Central  ADS  Google Scholar 

  148. Wei, Y., Amend, B., Todenhöfer, T., Lipke, N., Aicher, W. K., Fend, F., Stenzl, A., and Harland, N. (2022) Urinary tract tumor organoids reveal eminent differences in drug sensitivities when compared to 2-dimensional culture systems, Int. J. Mol. Sci., 23, 6305, https://doi.org/10.3390/ijms23116305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Mo, S., Tang, P., Luo, W., Zhang, L., Li, Y., Hu, X., Ma, X., Chen, Y., Bao, Y., He, X., et al. (2022) Patient-derived organoids from colorectal cancer with paired liver metastasis reveal tumor heterogeneity and predict response to chemotherapy, Adv. Sci. (Weinh.), 9, e2204097, https://doi.org/10.1002/advs.202204097.

    Article  CAS  PubMed  Google Scholar 

  150. Yan, H. H. N., Siu, H. C., Law, S., Ho, S. L., Yue, S. S. K., Tsui, W. Y., Chan, D., Chan, A. S., Ma, S., Lam, K. O., et al. (2018) A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening, Cell Stem Cell, 23, 882-897.e11, https://doi.org/10.1016/j.stem.2018.09.016.

    Article  CAS  PubMed  Google Scholar 

  151. Li, X., Francies, H. E., Secrier, M., Perner, J., Miremadi, A., Galeano-Dalmau, N., Barendt, W. J., Letchford, L., Leyden, G. M., Goffin, E. K., et al. (2018) Organoid cultures recapitulate esophageal adenocarcinoma heterogeneity providing a model for clonality studies and precision therapeutics, Nat. Commun., 9, 2983, https://doi.org/10.1038/s41467-018-05190-9.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  152. Yao, Y., Xu, X., Yang, L., Zhu, J., Wan, J., Shen, L., Xia, F., Fu, G., Deng, Y., Pan, M., et al. (2020) Patient-derived organoids predict chemoradiation responses of locally advanced rectal cancer, Cell Stem Cell, 26, 17-26.e6, https://doi.org/10.1016/j.stem.2019.10.010.

    Article  CAS  PubMed  Google Scholar 

  153. Porcelli, L., Di Fonte, R., Pierri, C. L., Fucci, L., Saponaro, C., Armenio, A., Serratì, S., Strippoli, S., Fasano, R., Volpicella, M., et al. (2022) BRAFV600E;K601Q metastatic melanoma patient-derived organoids and docking analysis to predict the response to targeted therapy, Pharmacol. Res., 182, 106323, https://doi.org/10.1016/j.phrs.2022.106323.

    Article  CAS  PubMed  Google Scholar 

  154. Keles, H., Schofield, C. A., Rannikmae, H., Edwards, E. E., and Mohamet, L. (2022) A scalable 3D high-content imaging protocol for measuring a drug induced DNA damage response using immunofluorescent subnuclear γH2AX spots in patient derived ovarian cancer organoids, ACS Pharmacol. Transl. Sci., 6, 12-21, https://doi.org/10.1021/acsptsci.2c00200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Wang, T., Pan, W., Zheng, H., Zheng, H., Wang, Z., Li, J. J., Deng, C., and Yan, J. (2021) Accuracy of using a patient-derived tumor organoid culture model to predict the response to chemotherapy regimens in stage IV colorectal cancer: a blinded study, Dis. Colon Rectum, 64, 833-850, https://doi.org/10.1097/DCR.0000000000001971.

    Article  PubMed  Google Scholar 

  156. Narasimhan, V., Wright, J. A., Churchill, M., Wang, T., Rosati, R., Lannagan, T. R. M., Vrbanac, L., Richardson, A. B., Kobayashi, H., Price, T., et al. (2020) Medium-throughput drug screening of patient-derived organoids from colorectal peritoneal metastases to direct personalized therapy, Clin. Cancer Res., 26, 3662-3670, https://doi.org/10.1158/1078-0432.CCR-20-0073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ooft, S. N., Weeber, F., Schipper, L., Dijkstra, K. K., McLean, C. M., Kaing, S., et al. (2021) Prospective experimental treatment of colorectal cancer patients based on organoid drug responses, ESMO Open, 6, 100103, https://doi.org/10.1016/j.esmoop.2021.100103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Magré, L., Verstegen, M. M. A., Buschow, S., van der Laan, L. J. W., Peppelenbosch, M., and Desai, J. (2023) Emerging organoid-immune co-culture models for cancer research: from oncoimmunology to personalized immunotherapies, J. Immunother. Cancer, 11, e006290, https://doi.org/10.1136/jitc-2022-006290.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Gezgin, G., Visser, M., Ruano, D., Santegoets, S. J., de Miranda, N. F. C. C., van der Velden, P. A., Luyten, G. P. M., van der Burg, S. H., Verdegaal, E. M., and Jager, M. J. (2022) Tumor-infiltrating T cells can be expanded successfully from primary uveal melanoma after separation from their tumor environment, Ophthalmol. Sci., 2, 100132, https://doi.org/10.1016/j.xops.2022.100132.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Zhou, G., Lieshout, R., van Tienderen, G. S., de Ruiter, V., van Royen, M. E., Boor, P. P. C., Magré, L., Desai, J., Köten, K., Kan, Y. Y., et al. (2022) Modelling immune cytotoxicity for cholangiocarcinoma with tumour-derived organoids and effector T cells, Br. J. Cancer, 127, 649-660, https://doi.org/10.1038/s41416-022-01839-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Zhang, W., and Zheng, X. (2023) Patient-derived xenografts or organoids in the discovery of traditional and self-assembled drug for tumor immunotherapy, Front. Oncol., 13, 1122322, https://doi.org/10.3389/fonc.2023.1122322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Singh, N., and Maus, M. V. (2023) Synthetic manipulation of the cancer-immunity cycle: CAR-T cell therapy, Immunity, 56, 2296-2310, https://doi.org/10.1016/j.immuni.2023.09.010.

    Article  CAS  PubMed  Google Scholar 

  163. Hemminki, O., dos Santos, J. M., and Hemminki, A. (2020) Oncolytic viruses for cancer immunotherapy, J. Hematol. Oncol., 13, 84, https://doi.org/10.1186/s13045-020-00922-1.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Song, Q., Zhang, C., and Wu, X. (2018) Therapeutic cancer vaccines: from initial findings to prospects, Immunol. Lett., 196, 11-21.

    Article  CAS  PubMed  Google Scholar 

  165. Sun, Q., Hong, Z., Zhang, C., Wang, L., Han, Z., and Ma, D. (2023) Immune checkpoint therapy for solid tumours: clinical dilemmas and future trends, Signal Transduct. Target. Ther., 8, 320, https://doi.org/10.1038/s41392-023-01522-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Leach, D. R., Krummel, M. F., and Allison, J. P. (1996) Enhancement of antitumor immunity by CTLA-4 blockade, Science, 271, 1734-1736, https://doi.org/10.1126/science.271.5256.1734.

    Article  CAS  PubMed  ADS  Google Scholar 

  167. Pham, T. N. D., Shields, M. A., Spaulding, C., Principe, D. R., Li, B., Underwood, P. W., Trevino, J. G., Bentrem, D. J., and Munshi, H. G. (2021) Preclinical models of pancreatic ductal adenocarcinoma and their utility in immunotherapy studies, Cancers (Basel), 13, 440, https://doi.org/10.3390/cancers13030440.

    Article  CAS  PubMed  Google Scholar 

  168. Guo, L., Wei, R., Lin, Y., and Kwok, H. F. (2020) Clinical and recent patents applications of PD-1/PD-L1 clinical and recent patents applications of PD-1/PD-L1 targeting immunotherapy in cancer treatment – current progress, strategy, and future perspective, Front. Immunol., 11, 1508, https://doi.org/10.3389/fimmu.2020.01508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Dong, Y., Wong, J. S. L., Sugimura, R., Lam, K.-O., Li, B., Kwok, G. G. W., Leung, R., Chiu, J. W. Y., Cheung, T. T., and Yau, T. (2021) Recent advances and future prospects in immune checkpoint (ICI)-based combination therapy for advanced HCC, Cancers (Basel), 13, 1949, https://doi.org/10.3390/cancers13081949.

    Article  CAS  PubMed  Google Scholar 

  170. Ou, L., Liu, S., Wang, H., Guo, Y., Guan, L., Shen, L., Luo, R., Elder, D. E., Huang, A. C., Karakousis, G., et al. (2023) Patient-derived melanoma organoid models facilitate the assessment of immunotherapies, eBioMedicine, 92, 104614, https://doi.org/10.1016/j.ebiom.2023.104614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Murali, A. K., and Mehrotra, S. (2011) Apoptosis - an ubiquitous T cell immunomodulator, J. Clin. Cell. Immunol., S3, 2, https://doi.org/10.4172/2155-9899.S3-002.

    Article  PubMed  Google Scholar 

  172. Courau, T., Bonnereau, J., Chicoteau, J., Bottois, H., Remark, R., Assante Miranda, L., Toubert, A., Blery, M., Aparicio, T., Allez, M., and Le Bourhis, L. (2019) Cocultures of human colorectal tumor spheroids with immune cells reveal the therapeutic potential of MICA/B and NKG2A targeting for cancer treatment, J. Immunother. Cancer, 7, 74, https://doi.org/10.1186/s40425-019-0553-9.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Bogomiakova, M. E., Sekretova, E. K., Eremeev, A. V., Shuvalova, L. D., Bobrovsky, P. A., Zerkalenkova, E. A., Lebedeva, O. S., and Lagarkova, M. A. (2021) Derivation of induced pluripotent stem cells line (RCPCMi007-A-1) with inactivation of the beta-2-microglobulin gene by CRISPR/Cas9 genome editing, Stem Cell Res., 55, 102451, https://doi.org/10.1016/j.scr.2021.102451.

    Article  CAS  PubMed  Google Scholar 

  174. Norouzi-Barough, L., Sarookhani, M. R., Salehi, R., Sharifi, M., and Moghbelinejad, S. (2018) CRISPR/Cas9, a new approach to successful knockdown of ABCB1/P-glycoprotein and reversal of chemosensitivity in human epithelial ovarian cancer cell line, Iran. J. Basic Med. Sci., 21, 181-187, https://doi.org/10.22038/IJBMS.2017.25145.6230.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Liu, T., Li, Z., Zhang, Q., Bernstein, K. D. A., Lozano-Calderon, S., Choy, E., Hornicek, F. J., and Duan, Z. (2016) Targeting ABCB1 (MDR1) in multi-drug resistant osteosarcoma cells using the CRISPR-Cas9 system to reverse drug resistance, Oncotarget, 7, 83502-83513, https://doi.org/10.18632/oncotarget.13148.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E., and Church, G. M. (2013) RNA-guided human genome engineering via Cas9, Science, 339, 823-826, https://doi.org/10.1126/science.1232033.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  177. Geurts, M. H., and Clevers, H. (2023) CRISPR engineering in organoids for gene repair and disease modelling, Nat. Rev. Bioeng., 1, 32-45, https://doi.org/10.1038/s44222-022-00013-5.

    Article  Google Scholar 

  178. Wang, H., Nakamura, M., Abbott, T. R., Zhao, D., Luo, K., Yu, C., Nguyen, C. M., Lo, A., Daley, T. P., La Russa, M., et al. (2019) CRISPR-mediated live imaging of genome editing and transcription, Science, 365, 1301-1305, https://doi.org/10.1126/science.aax7852.

    Article  CAS  PubMed  ADS  Google Scholar 

  179. Hendriks, D., Artegiani, B., Hu, H., Chuva de Sousa Lopes, S., and Clevers, H. (2020) Establishment of human fetal hepatocyte organoids and CRISPR-Cas9-based gene knockin and knockout in organoid cultures from human liver, Nat. Protoc., 16, 182-217, https://doi.org/10.1038/s41596-020-00411-2.

    Article  CAS  PubMed  Google Scholar 

  180. Maloshenok, L. G., Abushinova, G. A., Ryazanova, A. Yu., Bruskin, S. A., and Zherdeva, V. V. (2023) Visualizing the nucleome using the CRISPR-Cas9 system: from in vitro to in vivo, Biochemistry (Moscow), 88, S123-S149, https://doi.org/10.1134/S0006297923140080.

    Article  CAS  PubMed  Google Scholar 

  181. DiMasi, J. A., Reichert, J. M., Feldman, L., and Malins, A. (2013) Clinical approval success rates for investigational cancer drugs, Clin. Pharmacol. Ther., 94, 329-335, https://doi.org/10.1038/clpt.2013.117.

    Article  CAS  PubMed  Google Scholar 

  182. Romanovsky, G. B. (2020) Legal policy in the field of personalized medicine [in Russian], Sci. Soc. State, 8, 54-62, https://doi.org/10.21685/2307-9525-2020-8-1-7.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are deeply thankful to O. A. Bezborodova (National Medical Radiology Research Center of the Ministry of Health of the Russian Federation, P. Hertsen Moscow Oncology Research Institute) for valuable comments in the process of review preparation.

Funding

This study was supported by the Russian Science Foundation (agreement no. 221400205, https://rscf.ru/project/22-14-00205/ [in Russian]; Assessment of CRISPR/Cas9-based technologies, for A.Yu.R., L.G.M., and S.A.B).

Author information

Authors and Affiliations

Authors

Contributions

V.V.Zh. developed the concept of the article, wrote and edited the manuscript; N.V.R. developed the concept of the article, wrote and edited the manuscript; A.Yu.R. wrote the text and prepared the tables, edited the manuscript; A.R.L. wrote the text and prepared the tables; S.A.B. and L.G.M. wrote the text and edited the manuscript.

Corresponding author

Correspondence to Victoria V. Zherdeva.

Ethics declarations

This work does not contain any studies involving human and animal subjects. The authors of this work declare that they have no conflicts of interest.

Additional information

Translated from Uspekhi Biologicheskoi Khimii, 2024, Vol. 64, pp. 247-290.

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rassomakhina, N.V., Ryazanova, A.Y., Likhov, A.R. et al. Tumor Organoids: The Era of Personalized Medicine. Biochemistry Moscow 89 (Suppl 1), S127–S147 (2024). https://doi.org/10.1134/S0006297924140086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297924140086

Keywords

Navigation