Skip to main content
Log in

Direct Determination of the Structure of Single Biopolymer Molecules Using Nanopore Sequencing

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

This review highlights operational principles, features, and modern aspects of the development of third-generation sequencing technology of biopolymers focusing on the nucleic acids analysis, namely the nanopore sequencing system. Basics of the method and technical solutions used for its realization are considered, from the first works showing the possibility of creation of these systems to the easy-to-handle procedure developed by Oxford Nanopore Technologies company. Moreover, this review focuses on applications, which were developed and realized using equipment developed by the Oxford Nanopore Technologies, including assembly of whole genomes, methagenomics, direct analysis of the presence of modified bases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

References

  1. Deeb, K. K., Metcalf, J. D., Sesock, K. M., Shen, J., Wensel, Ch. A., Rippel, L. I., Smith, M., Chapman, M. S., and Zhang, S. (2015) The c.1364C>A (p.A455E) Mutation in the CFTR pseudogene results in an incorrectly assigned carrier status by a commonly used screening platform, J. Mol. Diagn., 17, 360-365, https://doi.org/10.1016/j.jmoldx.2015.02.005.

    Article  CAS  PubMed  Google Scholar 

  2. Topol, E. J. (2014) Individualized medicine from prewomb to tomb, Cell, 157, 241-253, https://doi.org/10.1016/j.cell.2014.02.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sanger, F., and Coulson, A. R. (1975) Rapid method for determining sequences in DNA. by primed synthesis with DNA polymerase, J. Mol. Biol., 94, 441-448, https://doi.org/10.1016/0022-2836(75)90213-2.

    Article  CAS  PubMed  Google Scholar 

  4. Sanger, F., Air, G. M., Barrell, B. G., Brown, N. L., Coulson, A. R., Fiddes, C. A., Hutchison, C. A., Slocombe, P. M., and Smith, M. (1977) Nucleotide sequence of bacteriophage φX174 DNA, Nature, 265, 687-695, https://doi.org/10.1038/265687a0.

    Article  CAS  PubMed  ADS  Google Scholar 

  5. International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome, Nature, 409, 860-921, https://doi.org/10.1038/35057062.

    Article  ADS  Google Scholar 

  6. Schadt, E. E., Turner, S., and Kasarskis, A. (2010) A window into third-generation sequencing, Hum. Mol. Genet., 19, R227-R240, https://doi.org/10.1093/hmg/ddq416.

    Article  CAS  PubMed  Google Scholar 

  7. Wang, Y., Yang, Q., and Wang, Zh. (2015) The evolution of nanopore sequencing, Front. Genet., 5, 449, https://doi.org/10.3389/fgene.2014.00449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bell, D. C., Thomas, W. K., Murtagh, K. M., Dionne, Ch. A., Graham, A. C., Anderson, J. E., Glover, W. R. (2012) DNA base identification by electron microscopy, Microsc. Microanal., 18, 1049-1053, https://doi.org/10.1017/S1431927612012615.

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Cheng, P., Oliver, P. M., Barrett, M. J., and Vezenov, D. (2012) Progress toward the application of molecular force spectroscopy to DNA sequencing, Electrophoresis, 33, 3497-3505, https://doi.org/10.1002/elps.201200351.

    Article  CAS  PubMed  Google Scholar 

  10. Bailo, E., and Deckert, V. (2008) Tip-enhanced Raman spectroscopy of single RNA strands: towards a novel direct-sequencing method, Angewandte Chemie Int. Ed., 47, 1658-1661, https://doi.org/10.1002/anie.200704054.

    Article  CAS  Google Scholar 

  11. Branton, D., Deamer, D. W., Marziali, A., Bayley, H., Benner, S. A., Butler, T., Di Ventra, M., Garaj, S., Hibbs, A., and Huang, X. (2008) The potential and challenges of nanopore sequencing, Nat. Biotechnol., 26, 1146-1153, https://doi.org/10.1038/nbt.1495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lu, H., Giordano, F., and Ning, Z. (2016) Oxford nanopore MinION sequencing and genome assembly, Genom. Proteom. Bioinform., 14, 265-279, https://doi.org/10.1016/j.gpb.2016.05.004.

    Article  Google Scholar 

  13. Castro-Wallace, S. L., Chiu, C. Y., John, K. K., Stahl, S. E., Rubins, K. H., McIntyre, A. B. R., Dworkin, J. P., Lupisella, M. L., Smith, D. J., Botkin, D. J., Stephenson, T. A., Juul, S., Turner, D. J., Izquierdo, F., Federman, S., Stryke, D., Somasekar, S., Alexander, N., Yu, G., Mason, C. E., and Burton, A. S. (2017) Nanopore DNA sequencing and genome assembly on the international space station, Sci. Rep., 7, 18022, https://doi.org/10.1038/s41598-017-18364-0.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  14. Heather, J. M., and Chain, B. (2016) The sequence of sequencers: the history of sequencing DNA, Genomics, 107, 1-8, https://doi.org/10.1016/j.ygeno.2015.11.003.

    Article  CAS  PubMed  Google Scholar 

  15. Suspicyn, E. N., and Sokolenko, A. P. (2013) The Use of New Generation Molecular Technologies in Medical Genetics [in Russian], St. Petersburg, p. 22.

  16. Suspicyn, E. N., Tyurin, V. I., and Imyanitov, E. N. (2016) Full excom sequencing: principles and diagnostic options [in Russian], Pediatrician, 7, 142-146, https://doi.org/10.17816/PED74142-146.

    Article  Google Scholar 

  17. Suspicyn, E. N., Guseva, M. N., and Sokolenko, A. P. (2017) Next generation targeted sequencing (NGS) in diagnosing primary immunodeficiencies, Med. Immunol., 19, 174.

    Google Scholar 

  18. Barhatov, I. M., Predeus, A. V., and Chuhlovin, A. B. (2016) Sequencing of a new generation and its application in oncohematology [in Russian], Onkogematologiya, 11, 56-63.

    Article  Google Scholar 

  19. Song, L., Hobaugh, M. R., Shustak, C., Cheley, S., Bayley, H., and Gouaux, J. E. (1996) Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore, Science, 274, 1859-1865, https://doi.org/10.1126/science.274.5294.1859.

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Faller, M., Niederweis, M., and Schulz, G. E. (2004) The structure of a mycobacterial outer-membrane channel, Science, 303, 1189-1192, https://doi.org/10.1126/science.1094114.

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Li, J., Stein, D., Mcmullan, C., Branton, D., Aziz, M. J., and Golovchenko, J. A. (2001) Ion-beam sculpting at nanometre length scales, Nature, 412, 166-169, https://doi.org/10.1038/35084037.

    Article  CAS  PubMed  ADS  Google Scholar 

  22. Yanagi, I., Akahori, R., Hatano, T., and Takeda, K.-I. (2014) Fabricating nanopores with diameters of sub-1 nm to 3 nm using multilevel pulse-voltage injection, Sci. Rep., 4, 5000, https://doi.org/10.1038/srep05000.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  23. Wu, L., Liu, H., Zhao, W., Wang, L., Hou, C., Liu, Q., and Lu, Z. (2014) Electrically facilitated translocation of protein through solid nanopore, Nanoscale Res. Lett., 9, 140, https://doi.org/10.1186/1556-276X-9-140.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  24. Hall, A., Scott, A., Rotem, D., Mehta, K. K., Bayley, H., and Dekker, C. (2010) Hybrid pore formation by directed insertion of α-haemolysin into solid-state nanopores, Nat. Nanotechnol., 5, 874-877, https://doi.org/10.1038/nnano.2010.237.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  25. Cabello-Aguilar, S., Balme, S., Chaaya, A. A., Bechelany, M., Balanzat, E., Janot, J.-M., Pochat-Bohatier, C., Miele, P., and Dejardin, P. (2013) Slow translocation of polynucleotides and their discrimination by α-hemolysin inside a single track-etched nanopore designed by atomic layer deposition, Nanoscale, 5, 9582-9586, https://doi.org/10.1039/c3nr03683a.

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Kasianowicz, J. J., Balijepalli, A. K., Ettedgui, J., Forstater, J. H., Wang, H., Zhang, H., and Robertson, J. W. (2016) Analytical applications for pore-forming proteins, Biochim. Biophys. Acta, 1858, 593-606, https://doi.org/10.1016/j.bbamem.2015.09.023.

    Article  CAS  PubMed  Google Scholar 

  27. Wendell, D., Jing, P., Geng, J., Subramaniam, V., Lee, T. J., Montemagno, C., and Guo, P. (2009) Translocation of double-stranded DNA through membrane-adapted ϕ29 motor protein nanopores, Nat. Nanotechnol., 4, 765-772, https://doi.org/10.1038/nnano.2009.259.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  28. Laszlo, A. H., Derrington, I. M., and Gundlach, J. H. (2016) MspA nanopore as a single-molecule tool: from sequencing to SPRNT, Methods, 105, 75-89, https://doi.org/10.1016/j.ymeth.2016.03.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kang, X. F., Gu, L. Q., Cheley, S., and Bayley, H. (2005) Single protein pores containing molecular adapters at high temperatures, Angewandte Chemie Int. Ed., 25, 44-54, https://doi.org/10.1002/anie.200461885.

    Article  CAS  Google Scholar 

  30. Jing, P., Haque, F., Vonderheide, A. P., Montemagno, C., and Guo, P. (2010) Robust properties of membrane-embedded connector channel of bacterial virus phi29 DNA packaging motor, Mol. Biosystem, 6, 1844-1852, https://doi.org/10.1039/c003010d.

    Article  CAS  Google Scholar 

  31. Pastoriza-Gallego, M., Rabah, L., Gibrat, G., Thiebot, B., van der Goot, F. G., Auvray, L., Betton, J.-M., and Pelta, J. (2011) Dynamics of unfolded protein transport through an aerolysin pore, J. Am. Chem. Soc., 133, 2923-2931, https://doi.org/10.1021/ja1073245.

    Article  CAS  PubMed  Google Scholar 

  32. Cressiot, B., Braselmann, E., Oukhaled, A., Elcock, A. H., Pelta, J., and Clark, P. L. (2015) Dynamics and energy contributions for transport of unfolded pertactin through a protein nanopore, ACS Nano, 9, 9050-9061, https://doi.org/10.1021/acsnano.5b03053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fennouri, A., Daniel, R., Pastoriza-Gallego, M., Auvray, L., Pelta, J., and Bacri, L. (2013) Kinetics of enzymatic degradation of high molecular weight polysaccharides through a nanopore: experiments and data-modeling, Anal. Chem., 85, 8488-8492, https://doi.org/10.1021/ac4020929.

    Article  CAS  PubMed  Google Scholar 

  34. Cao, C., Ying, Y. L., Hu, Z. L., Liao, D. F., Tian, H., and Long, Y. T. (2016) Discrimination of oligonucleotides of different lengths with a wild-type aerolysin nanopore, Nat. Nanotechnol., 11, 713-718, https://doi.org/10.1038/nnano.2016.66.

    Article  CAS  PubMed  ADS  Google Scholar 

  35. Butler, T. Z., Pavlenok, M., Derrington, I. M., Niederweis, M., and Gundlach, J. H. (2008) Single-molecule DNA detection with an engineered MspA protein nanopore, Proc. Natl. Acad. Sci. USA, 105, 20647, https://doi.org/10.1073/pnas.0807514106.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  36. Heinz, C., Engelhardt, H., and Niederweis, M. (2003) The core of the tetrameric mycobacterial porin MspA is an extremely stable beta-sheet domain, J. Biol. Chem., 278, 8678-8685, https://doi.org/10.1074/jbc.M212280200.

    Article  CAS  PubMed  Google Scholar 

  37. Van den Hout, M., Hall, A. R., Wu, M. Y., Zandbergen, H. W., Dekker, C., and Dekker, N. H. (2010) Controlling nanopore size, shape and stability, Nanotechnology, 21, 115304, https://doi.org/10.1088/0957-4484/21/11/115304.

    Article  CAS  PubMed  ADS  Google Scholar 

  38. Yuan, J. H., He, F. Y., Sun, D. C., and Xia, X. H. (2004) A simple method for preparation of through-hole porous anodic alumina membrane, Chem. Mater., 16, 1841, https://doi.org/10.1021/cm049971u.

    Article  CAS  Google Scholar 

  39. Siwi, Z., Gu, Y., Spohr, H. A., Baur, D., Wolf-Reber, A., Spohr, R., Apel, P., and Korchev, Y. E. (2002) Rectification and voltage gating of ion currents in a nanofabricated pore, Europhys. Lett., 60, 349, https://doi.org/10.1209/epl/i2002-00271-3.

    Article  ADS  Google Scholar 

  40. Storm, A. J., Chen, J. H., Ling, X. S., Zandbergen, H. W., and Dekker, C. (2003) Fabrication of solid-state nanopores with single-nanometre precision, Nat. Materials, 2, 537-540, https://doi.org/10.1209/epl/i2002-00271-3.

    Article  CAS  PubMed  ADS  Google Scholar 

  41. Zhao, Q., Sigalov, G., Dimitrov, V., Dorvel, B., Mirsaidov, U., Sligar, S., Aksimentiev, A., and Timp, G. (2007) Detecting SNPs using a synthetic nanopore, Nano Lett., 7, 1680-1685, https://doi.org/10.1021/nl070668c.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  42. Heng, J. B., Ho, C., Kim, T., Timp, R., Aksimentiev, A., Grinkova, Y. V., Sligar, S., Schulten, K., and Timp, G. (2004) Sizing DNA using a nanometer-diameter pore, Biophys. J., 87, 2905, https://doi.org/10.1529/biophysj.104.041814.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  43. Cressiot, B., Greive, S. J., Mojtabavi, M., Antson, A. A., and Wanunu, M. (2018) Thermostable virus portal proteins as reprogrammable adapters for solid-state nanopore sensors, Nat. Commun., 9, 4652, https://doi.org/10.1038/s41467-018-07116-x.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  44. Hall, A. R., Scott, A., Rotem, D., Mehta, K. K., Bayley, H., and Dekker, C. (2010) Hybrid pore formation by directed insertion of α-haemolysin into solid-state nanopores, Nat. Nanotechnol., 5, 874, https://doi.org/10.1038/nnano.2010.237.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  45. Zvereva, M. E., Malyavko, A. N., Dontsova, O. A. (2012) DNA as a nanomaterial, Polymer Sci. Ser. A, 54, 531-539, https://doi.org/10.1134/S0965545X12040104.

    Article  CAS  Google Scholar 

  46. Bell, N. A. W., Engst, C. R., Ablay, M., Divitini, G., Ducati, C., Liedl, T., and Keyser, U. F. (2012) DNA origami nanopores, Nano Lett., 12, 512-517, https://doi.org/10.1021/nl204098n.

    Article  CAS  PubMed  ADS  Google Scholar 

  47. Bell, N. A. W., and Keyser, U. F. (2014) Nanopores formed by DNA origami: a review, FEBS Lett., 588, 3564-3570, https://doi.org/10.1016/j.febslet.2014.06.013.

    Article  CAS  PubMed  Google Scholar 

  48. Shenoy, D. K., Barger, W. R., Singh, A., Panchal, R. G., Misakian, M., Stanford, V. M., and Kasianowicz, J. J. (2005) Functional reconstitution of protein ion channels into planar polymerizable phospholipid membranes, Nano Lett., 5, 1181-1185, https://doi.org/10.1021/nl050481q.

    Article  CAS  PubMed  ADS  Google Scholar 

  49. Schiller, S. M., Naumann, R., Lovejoy, K., Kunz, H., and Knoll, W. (2003) Archaea analogue thiolipids for tethered bilayer lipid membranes on ultrasmooth gold surfaces, Angewandte Chemie Int. Ed., 42, 208-211, https://doi.org/10.1002/anie.200390080.

    Article  CAS  Google Scholar 

  50. Holden, M. A., Needham, D., and Bayley, H. (2007) Functional bionetworks from nanoliter water droplets, J. Am. Chem. Soc., 129, 8650-8655, https://doi.org/10.1021/ja072292a.

    Article  CAS  PubMed  Google Scholar 

  51. Van der Verren, S. E., Van Gerven, N., Jonckheere, W., Hambley, R., Singh, P., Kilgour, J., Jordan, M., Wallace, E. J., Jayasinghe, L., and Remaut, H. (2020) A dual-constriction biological nanopore resolves homonucleotide sequences with high fidelity, Nat. Biotechnol., 38, 1415-1420, https://doi.org/10.1038/s41587-020-0570-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Deamer, D., Akeson, M., and Branton, D. (2016) Author response to John Kasianowicz and Sergey Bezrukov, Nat. Biotechnol., 34, 482-482, https://doi.org/10.1038/nbt.3561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Goyal, P., Krasteva, P. V., Van Gerven, N., Gubellini, F., Van den Broeck, I., Troupiotis-Tsaïlaki, A., Jonckheere, W., Péhau-Arnaudet, G., Pinkner, J. S., Chapman, M. R., Hultgren, S. J., Howorka, S., Fronzes, R., and Remaut, H. (2014) Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG, Nature, 516, 250-253, https://doi.org/10.1038/nature13768.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  54. Minei, R., Hoshina, R., and Ogura, A. (2018) De novo assembly of middle-sized genome using MinION and Illumina sequencers, Genomics, 19, 700, https://doi.org/10.1186/s12864-018-5067-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ashton, P. M., Nair, S., Dallman, T., Rubino, S., Rabsch, W., Mwaigwisya, S., Wain, J., and O’Grady, J. (2015) MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island, Nat. Biotechnol., 33, 296-300, https://doi.org/10.1038/nbt.3103.

    Article  CAS  PubMed  Google Scholar 

  56. Carter, J. M., and Hussain, S. (2017) Robust long-read native DNA sequencing using the ONT CsgG Nanopore system, Wellcome Open Res., 2, 23, https://doi.org/10.12688/wellcomeopenres.11246.3.

    Article  PubMed  Google Scholar 

  57. Wick, R. R., Judd, L. M., and Holt, K. E. (2019) Performance of neural network basecalling tools for Oxford Nanopore sequencing, Genome Biol., 20, 129, https://doi.org/10.1186/s13059-019-1727-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tytgat, O., Gansemans, Y., Weymaere, J., Rubben, K., Deforce, D., and Van Nieuwerburgh, F. (2020) Nanopore sequencing of a forensic STR multiplex reveals loci suitable for single-contributor STR profiling, Genes, 11, 381, https://doi.org/10.3390/genes11040381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huang, Y. T., Liu, P. Y., and Shih, P. W. (2021) Homopolish: a method for the removal of systematic errors in nanopore sequencing by homologous polishing, Genome Biol., 22, 95, https://doi.org/10.1186/s13059-021-02282-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rhoads, A., and Au, K. F. (2015) PacBio sequencing and its applications, Genom. Proteom. Bioinform., 13, 278-289, https://doi.org/10.1016/j.gpb.2015.08.002.

    Article  Google Scholar 

  61. Ip, C. L. C., Loose, M., Tyson, J. R., de Cesare, M., Brown, B. L., Jain, M., Leggett, R. M., Eccles, D. A., Zalunin, V., Urban, J. M., Piazza, P., Bowden, R. J., Paten, B., Mwaigwisya, S., Batty, E. M., Simpson, J. T., Snutch, T. P., Birney, E., Buck, D., Goodwin, S., Jansen, H. J., O’Grady, J., and Olsen, H. E. (2015) MinION analysis and reference consortium. MinION analysis and reference consortium: Phase 1 data release and analysis, F1000Res., 15, 1075, https://doi.org/10.12688/f1000research.7201.1.

    Article  Google Scholar 

  62. Gong, L., Wong, C. H., Cheng, W. C., Tjong, H., Menghi, F., Ngan, C. Y., Liu, E. T., and Wei, C. L. (2018) Picky comprehensively detects high-resolution structural variants in nanopore long reads, Nat. Methods, 15, 455-460, https://doi.org/10.1038/s41592-018-0002-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Seki, M., Katsumata, E., Suzuki, A., Sereewattanawoot, S., Sakamoto, Y., Mizushima-Sugano, J., Sugano, S., Kohno, T., Frith, M. C., Tsuchihara, K., and Suzuki, Y. (2019) Evaluation and application of RNA-Seq by MinION, DNA Res., 26, 55-65, https://doi.org/10.1093/dnares/dsy038.

    Article  CAS  PubMed  Google Scholar 

  64. Rang, F. J., Kloosterman, W. P., and de Ridder, J. (2018) From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy, Genome Biol., 19, 90, https://doi.org/10.1186/s13059-018-1462-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee, I., Razaghi, R., Gilpatrick, T., Molnar, M., Gershman, A., Sadowski, N., Sedlazeck, F. J., Hansen, K. D., Simpson, J. T., and Timp, W. (2020) Simultaneous profiling of chromatin accessibility and methylation on human cell lines with nanopore sequencing, Nat. Methods, 17, 1191-1199, https://doi.org/10.1038/s41592-020-01000-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Norris, A. L., Workman, R. E., Fan, Y. F., Eshleman, J. R., and Timp, W. (2016) Nanopore sequencing detects structural variants in cancer, Cancer Biol. Ther., 17, 246-253, https://doi.org/10.1080/15384047.2016.1139236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Squires, A., Atas, E., and Meller, A. (2015) Nanopore sensing of individual transcription factors bound to DNA, Sci. Rep., 5, 1-11, https://doi.org/10.1038/srep11643.

    Article  CAS  Google Scholar 

  68. Lyko, F. (2018) The DNA methyltransferase family: a versatile toolkit for epigenetic regulation, Nat. Rev. Genet., 19, 81-92, https://doi.org/10.1038/nrg.2017.80.

    Article  CAS  PubMed  Google Scholar 

  69. Chan, W. M., Ip, J. D., Chu, A. W. H., Yip, C. C. Y., Lo, L. S., Chan, K. H., Ng, A. C. K., Poon, R. W. S., To, W. K., Tsang, O. T. Y., et al. (2020) Identification of nsp1 gene as the target of SARS-CoV-2 real-time RT-PCR using nanopore whole-genome sequencing, J. Med. Virol., 92, 2725-2734, https://doi.org/10.1002/jmv.26140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang, M., Fu, A. S., Hu, B., Tong, Y. Q., Liu, R., Liu, Z., Gu, J. S., Xiang, B., Liu, J. H., Jiang, W., et al. (2020) Nanopore targeted sequencing for the accurate and comprehensive detection of SARS-CoV-2 and other respiratory viruses, Small, 16, 15, https://doi.org/10.1002/smll.202002169.

    Article  CAS  Google Scholar 

  71. Amoutzias, G. D., Nikolaidis, M., and Hesketh, A. (2022) The notable achievements and the prospects of bacterial pathogen genomics, Microorganisms, 10, 1040, https://doi.org/10.3390/microorganisms10051040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Athanasopoulou, K., Boti, M. A., Adamopoulos, P. G., Skourou, P. C., and Scorilas, A. (2021) Third-generation sequencing: the spearhead towards the radical transformation of modern genomics, Life, 12, 30, https://doi.org/10.3390/life12010030.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  73. Khrenova, M. G., Panova, T. V., Rodin, V. A., Kryakvin, M. A., Lukyanov, D. A., Osterman, I. A., and Zvereva, M. I. (2022) Nanopore sequencing for de novo bacterial genome assembly and search for single-nucleotide polymorphism, Int. J. Mol. Sci., 23, 8569, https://doi.org/10.3390/ijms23158569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Curry, K. D., Wang, Q., Nute, M. G., Tyshaieva, A., Reeves, E., Soriano, S., Wu, Q., Graeber, E., Finzer, P., Mendling, W., Savidge, T., Villapol, S., Dilthey, A., and Treangen, T. J. (2022) Emu: species-level microbial community profiling of full-length 16S rRNA Oxford Nanopore sequencing data, Nat. Methods, 19, 845-853, https://doi.org/10.1038/s41592-022-01520-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Clarke, J., Wu, H.-C., Jayasinghe, L., Patel, A., Reid, S., and Bayley, H. (2009) Continuous base identification for single-molecule nanopore DNA sequencing, Nat. Nanotechnol., 4, 265-270, https://doi.org/10.1038/s41592-022-01520-4.

    Article  CAS  PubMed  ADS  Google Scholar 

  76. Manrao, E. A., Derrington, I. M., Laszlo, A. H., Langford, K. W., Hopper, M. K., Gillgren, N., Pavlenok, M., Niederweis, M., and Gundlach, J. H. (2012) Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase, Nat. Biotechnol., 30, 349-353, https://doi.org/10.1038/nbt.2171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cherf, G. M., Lieberman, K. R., Rashid, H., Lam, C. E., Karplus, K., and Akeson, M. (2012) Automated forward and reverse ratcheting of DNA in a nanopore at 5-A precision, Nat. Biotechnol., 30, 344-348, https://doi.org/10.1038/nbt.2147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Steen, H., and Mann, M. (2004) The abc’s (and xyz’s) of peptide sequencing, Nat. Rev. Mol. Cell Biol., 5, 699-711, https://doi.org/10.1038/nrm1468.

    Article  CAS  PubMed  Google Scholar 

  79. Yates, J. R., III (2011) A century of mass spectrometry: from atoms to proteomes, Nat. Methods, 8, 633-637, https://doi.org/10.1038/nmeth.1659.

    Article  CAS  Google Scholar 

  80. Aebersold, R., and Mann, M. (2016) Mass-spectrometric exploration of proteome structure and function, Nature, 537, 347-355, https://doi.org/10.1038/nature19949.

    Article  CAS  PubMed  ADS  Google Scholar 

  81. Walther, T. C., and Mann, M. (2010) Mass spectrometry-based proteomics in cell biology, J. Cell Biol., 190, 491-500, https://doi.org/10.1083/jcb.201004052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Domon, B., and Aebersold, R. (2010) Options and considerations when selecting a quantitative proteomics strategy, Nat. Biotechnol., 28, 710-721, https://doi.org/10.1038/nbt.1661.

    Article  CAS  PubMed  Google Scholar 

  83. Oukhaled, G., Mathe, J., Biance, A., Bacri, L., Betton, J., Lairez, D., Pelta, J., and Auvray, L. (2007) Unfolding of proteins and long transient conformations detected by single nanopore recording, Phys. Rev. Lett., 98, 158101, https://doi.org/10.1103/PhysRevLett.98.158101.

    Article  CAS  PubMed  ADS  Google Scholar 

  84. Talaga, D., and Li, J. (2009) Single-molecule protein unfolding in solid state nanopores, J. Am. Chem. Soc., 131, 9287-9297, https://doi.org/10.1021/ja901088b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Van Meervelt, V., Soskine, M., Singh, S., Schuurman-Wolters, G. K., Wijma, H. J., Poolman, B., and Maglia, G. (2017) Real-time conformational changes and controlled orientation of native proteins inside a protein nanoreactor, J. Am. Chem. Soc., 139, 18640-18646, https://doi.org/10.1021/jacs.7b10106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Varongchayakul, N., Huttner, D., Grinstaff, M. W., and Meller, A. (2018) Sensing native protein solution structures using a solid-state nanopore: unraveling the states of VEGF, Sci. Rep., 8, 1017, https://doi.org/10.1038/s41598-018-19332-y.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  87. Waduge, P., Hu, R., Bandarkar, P., Yamazaki, H., Cressiot, B., Zhao, Q., Whitford, P. C., and Wanunu, M. (2017) Nanopore- based measurements of protein size, fluctuations, and conformational changes, ACS Nano, 11, 5706-5716, https://doi.org/10.1021/acsnano.7b01212.

    Article  CAS  PubMed  Google Scholar 

  88. Martyushenko, N., Bell, N. A., Lamboll, R. D., and Keyser, U. F. (2015) Nanopore analysis of amyloid fibrils formed by lysozyme aggregation, Analyst, 140, 4882-4886, https://doi.org/10.1039/c5an00530b.

    Article  CAS  PubMed  ADS  Google Scholar 

  89. Giamblanco, N., Coglitore, D., Janot, J.-M., Coulon, P. E., Charlot, B., and Balme, S. (2018) Detection of protein aggregate morphology through single antifouling nanopore, Sens. Actuators B, 260, 736-745, https://doi.org/10.1016/j.snb.2018.01.094.

    Article  CAS  Google Scholar 

  90. Iacovache, I., De Carlo, S., Cirauqui, N., Dal Peraro, M., van der Goot, F. G., and Zuber, B. (2016) Cryo-EM structure of aerolysin variants reveals a novel protein fold and the pore-formation process, Nat. Commun., 7, 12062, https://doi.org/10.1038/ncomms12062.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  91. Tanaka, K., Caaveiro, J. M. M., Morante, K., González-Mañas, J. M., and Tsumoto, K. (2015) Structural basis for self-assembly of a cytolytic pore lined by protein and lipid, Nat. Commun., 6, 6337, https://doi.org/10.1038/ncomms7337.

    Article  CAS  PubMed  ADS  Google Scholar 

  92. Gu, Z., Ying, Y. L., and Long, Y. T. (2018) Nanopore sensing system for high-throughput single molecular analysis, Sci. China Chem., 61, 1483-1485, https://doi.org/10.1007/s11426-018-9312-3.

    Article  CAS  Google Scholar 

  93. Kasianowicz, J. J., Balijepalli, A. K., Ettedgui, J., Forstater, J. H., Wang, H., Zhang, H., and Robertson, J. W. F., (2016) Analytical applications for pore-forming proteins, Biochim. Biophys. Acta Biomembr., 1858, 593-606, https://doi.org/10.1016/j.bbamem.2015.09.023.

    Article  CAS  Google Scholar 

  94. Ayub, M., Hardwick, S. W., Luisi, B. F., and Bayley, H. (2013) Nanopore-based identification of individual nucleotides for direct RNA sequencing, Nano Lett., 12, 6144-6150, https://doi.org/10.1021/nl403469r.

    Article  CAS  ADS  Google Scholar 

  95. Khrenova, M., Nikiforova, L., Grabovenko, F., Orlova, N., Sinegubova, M., Kolesov, D., Zavyalova, E., Spiridonova, V., Zatsepin, T., and Zvereva, M. (2022) In vitro selection of an aptamer targeting SARS-CoV-2 Spike protein with nanopore sequence identification reveals discrimination between the authentic strain and Omicron, ChemRxiv. Cambridge: Cambridge Open Engage, https://doi.org/10.26434/chemrxiv-2022-d9gcs.

    Article  Google Scholar 

  96. Xi, D., Shang, J., Fan, E., You, J., Zhang, S., and Wang, H. (2016) Nanopore-based selective discrimination of microRNAs with single-nucleotide difference using locked nucleic acid-modified probes, Anal. Chem., 21, 10540-10546, https://doi.org/10.1021/acs.analchem.6b02620.

    Article  CAS  Google Scholar 

  97. Zahid, O. K., Wang, F., Ruzicka, J. A., Taylor, E. W., and Hall, A. R. (2016) Sequence-specific recognition of microRNAs and other short nucleic acids with solid-state nanopores, Nano Lett., 3, 2033-2039, https://doi.org/10.1021/acs.nanolett.6b00001.

    Article  CAS  ADS  Google Scholar 

  98. Riedl, J., Ding, Y., Fleming, A. M., and Burrows, C. J. (2015) Identification of DNA lesions using a third base pair for amplification and nanopore sequencing, Nat. Commun., 1, 8807, https://doi.org/10.1038/ncomms9807.

    Article  CAS  ADS  Google Scholar 

  99. Shang, J., Li, Z., Liu, L., Xi, D., and Wang, H. (2018) Label-free sensing of human 8-oxoguanine DNA glycosylase activity with a nanopore, ACS Sensors, 2, 512-518, https://doi.org/10.1021/acssensors.7b00954.

    Article  CAS  Google Scholar 

  100. Wang, Y., Tian, K., Shi, R., Gu, A., Pennella, M., Alberts, L., Gates, K. S., Li, G., Fan, H., Wang, M. X., and Gu, L. Q. (2017) Nanolock-nanopore facilitated digital diagnostics of cancer driver mutation in tumor tissue, ACS Sensors, 7, 975-981, https://doi.org/10.1021/acssensors.7b00235.

    Article  CAS  Google Scholar 

  101. Zhang, Sh., Cao, Z., Fan, P., Wang, Y., Jia, W., Wang, L., Wang, K., Liu, Y., Du, X., Hu, C., Zhang, P., Chen, H.-Y., and Huang, S. (2022) A nanopore-based saccharide sensor, Angewandte Chemie Int. Ed., 61, e202203769, https://doi.org/10.1002/anie.202203769.

    Article  CAS  ADS  Google Scholar 

  102. Wang, H.-Y., Song, Z.-Y., Zhang, H.-S., and Chen, S.-P. (2016) Single-molecule analysis of lead(II)-binding aptamer conformational changes in an α-hemolysin nanopore, and sensitive detection of lead(II), Microchim. Acta, 183, 1003-1010, https://doi.org/10.1007/s00604-015-1699-x.

    Article  CAS  Google Scholar 

  103. Roozbahani, G. M., Chen, X., Zhang, Y., Xie, R., Ma, R., Li, D., Li, H., and Guan, X. (2017) Peptide-mediated nanopore detection of uranyl ions in aqueous media, ACS Sensors, 5, 703-709, https://doi.org/10.1021/acssensors.7b00210.

    Article  CAS  Google Scholar 

  104. Roozbahani, G. M., Chen, X., Zhang, Y., Wang, L., and Guan, X. (2020) Nanopore detection of metal ions: current status and future directions, Small Methods, 4, 2000266, https://doi.org/10.1002/smtd.202000266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tsutsui, M., Yokota, K., Yoshida, T., Hotehama, C., Kowada, H., Esaki, Y., Taniguchi, M., Washio, T., and Kawai, T. (2019) ‘Identifying single particles in air using a 3D-integrated solid-state pore’, ACS Sensors, 4, 748-755, https://doi.org/10.1021/acssensors.9b00113.

    Article  CAS  PubMed  Google Scholar 

  106. Goyal, G., Mulero, R., Ali, J., Darvish, A., and Kim, M. J. (2015) Low aspect ratio micropores for single-particle and single-cell analysis: nanoanalysis, Electrophoresis, 36, 1164-1171, https://doi.org/10.1002/elps.201400570.

    Article  CAS  PubMed  Google Scholar 

  107. Tsutsui, M., Yoshida, T., Yokota, K., Yasaki, H., Yasui, T., Arima, A., Tonomura, W., Nagashima, K., Yanagida, T., Kaji, N., Taniguchi, M., Washio, T., Baba, Y., and Kawai, T. (2017) Discriminating single-bacterial shape using low-aspect-ratio pores, Sci. Rep., 7, 17371, https://doi.org/10.1038/s41598-017-17443-6.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  108. Tsutsui, M., Hongo, S., He, Y., Taniguchi, M., Gemma, N., and Kawai, T., (2012) Single-nanoparticle detection using a low-aspect-ratio pore, ACS Nano, 6, 3499-3505, https://doi.org/10.1021/nn300530b.

    Article  CAS  PubMed  Google Scholar 

  109. Taniguchi, M., Takei, H., Tomiyasu, K., Sakamoto, O., and Naono, N. (2022) Sensing the performance of artificially intelligent nanopores developed by integrating solid-state nanopores with machine learning methods, J. Phys. Chem. C, 126, 12197-12209, https://doi.org/10.1021/acs.jpcc.2c02674.

    Article  CAS  Google Scholar 

  110. Darvish, A., Goyal, G., Aneja, R., Sundaram, R. V. K., Lee, K., Ahn, C. W., Kim, K.-B., Vlahovskaf, P. M., and Kim, M. J. (2016) Nanoparticle mechanics: deformation detection via nanopore resistive pulse sensing, Nanoscale, 8, 14420-14431, https://doi.org/10.1039/c6nr03371g.

    Article  CAS  PubMed  ADS  Google Scholar 

  111. Gu, Z., Ying, Y.-L., Cao, C., He, P., and Long, Y.-T. (2015) Accurate data process for nanopore analysis, Anal. Chem., 87, 907-913, https://doi.org/10.1021/ac5028758.

    Article  CAS  PubMed  Google Scholar 

  112. Misiunas, K., Ermann, N., and Keyser, U. F. (2018) QuipuNet: convolutional neural network for single-molecule nanopore sensing, Nano Lett., 18, 4040-4045, https://doi.org/10.1021/acs.nanolett.8b01709.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  113. Shekar, S., Chien, C. C., Hartel, A., Ong, P., Clarke, O. B., Marks, A., Drndic, M., and Shepard, K. L. (2019) wavelet denoising of high-bandwidth nanopore and ion-channel signals, Nano Lett., 19, 1090-1097, https://doi.org/10.1021/acs.nanolett.8b04388.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Funding

This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation, grant no. 075-15-2021-1396, October 26, 2021.

Author information

Authors and Affiliations

Authors

Contributions

M.E.Z. and V.K.S. concept and supervision of the study; O.A.P. analysis of the literature on the structure and organization of nanopores; A.A.Z. and V.A.R analysis of the literature on the history of method development and preparation of illustrations; T.V.P. information on the technology applications; A.K.B preparation of the text and editing the paper.

Corresponding author

Correspondence to Anna K. Berkovich.

Ethics declarations

This work does not contain any studies involving human and animal subjects. The authors of this work declare that they have no conflicts of interest.

Additional information

Translated from Uspekhi Biologicheskoi Khimii, 2024, Vol. 64, pp. 449-478.

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berkovich, A.K., Pyshkina, O.A., Zorina, A.A. et al. Direct Determination of the Structure of Single Biopolymer Molecules Using Nanopore Sequencing. Biochemistry Moscow 89 (Suppl 1), S234–S248 (2024). https://doi.org/10.1134/S000629792414013X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629792414013X

Keywords

Navigation