Skip to main content
Log in

Multicomponent DNAzyme Nanomachines: Structure, Applications, and Prospects

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Nucleic acids (NAs) are important components of living organisms responsible for the storage and transmission of hereditary information. They form complex structures that can self-assemble and bind to various biological molecules. DNAzymes are NAs capable of performing simple chemical reactions, which makes them potentially useful elements for creating DNA nanomachines with required functions. This review focuses on multicomponent DNA-based nanomachines, in particular on DNAzymes as their main functional elements, as well as on the structure of DNAzyme nanomachines and their application in the diagnostics and treatment of diseases. The article also discusses the advantages and disadvantages of DNAzyme-based nanomachines and prospects for their future applications. The review provides information about new technologies and the possibilities of using NAs in medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Abbreviations

ASO:

antisense oligonucleotide

MDMR1:

multifunctional DNA-nanomachine for RNA analysis

NA:

nucleic acid

biDNAzyme:

binary DNAzyme

References

  1. Liu, W., Duan, H., Zhang, D., Zhang, X., Luo, Q., Xie, T., Yan, H., Peng, L., Hu, Y., Liang, L., Zhao, G., and Xie, Z. (2021) Concepts and application of DNA origami and DNA self-assembly: a systematic review, App. Bion. Biomech., 2021, 9112407, https://doi.org/10.1155/2021/9112407.

    Article  Google Scholar 

  2. Zhang, F., Nangreave, J., Liu, Y., and Yan, H. (2014) Structural DNA nanotechnology: state of the art and future perspective, JACS, 136, 11198-11211, https://doi.org/10.1021/ja505101a.

    Article  CAS  Google Scholar 

  3. Nummelin, S., Kommeri, J., Kostiainen, M. A., and Linko, V. (2018) Evolution of Structural DNA Nanotechnology, Adv. Mat., 30, 1703721, https://doi.org/10.1002/adma.201703721.

    Article  CAS  Google Scholar 

  4. Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction, Nucleic Acids Res., 31, 3406-3415, https://doi.org/10.1093/nar/gkg595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zadeh, J. N., Steenberg, C. D., Bois, J. S., Wolfe, B. R., Pierce, M. B., Khan, A. R., Dirks, R. M., and Pierce, N. A. (2011) NUPACK: analysis and design of nucleic acid systems, J. Comp. Chem, 32, 170-173, https://doi.org/10.1002/jcc.21596.

    Article  CAS  Google Scholar 

  6. Shen, L., Wang, P., and Ke, Y. (2021) DNA nanotechnology-based biosensors and therapeutics, Adv. Healthcare Mat., 10, 2002205, https://doi.org/10.1002/adhm.202002205.

    Article  CAS  Google Scholar 

  7. Gong, L., Zhao, Z., Lv, Y. F., Huan, S. Y., Fu, T., Zhang, X. B., Shen, G. L., and Yu, R. Q. (2015) DNAzyme-based biosensors and nanodevices, Chem. Commun., 51, 979-995, https://doi.org/10.1039/C4CC06855F.

    Article  CAS  Google Scholar 

  8. Wang, F., Liu, X., and Willner, I. (2015) DNA switches: from principles to applications, Angew. Chem. Int. Ed. Engl., 54, 1098-1129, https://doi.org/10.1002/anie.201404652.

    Article  CAS  PubMed  Google Scholar 

  9. Breaker, R. R., and Joyce, G. F. (1994) A DNA enzyme that cleaves RNA, Chem. Biol., 1, 223-229, https://doi.org/10.1016/1074-5521(94)90014-0.

    Article  CAS  PubMed  Google Scholar 

  10. Santoro, S. W., and Joyce, G. F. (1997) A general purpose RNA-cleaving DNA enzyme, Proc. Natl. Acad. Sci. USA, 94, 4262-4266, https://doi.org/10.1073/pnas.94.9.4262.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. Fokina, A. A., Stetsenko, D. A., and François, J. C. (2015) DNA enzymes as potential therapeutics: towards clinical application of 10-23 DNAzymes, Exp. Opin. Biol. Ther., 15, 689-711, https://doi.org/10.1517/14712598.2015.1025048.

    Article  CAS  Google Scholar 

  12. Cairns, M. J., King, A., and Sun, L. (2003) Optimisation of the 10-23 DNAzyme–substrate pairing interactions enhanced RNA cleavage activity at purine–cytosine target sites, Nucleic Acids Res., 31, 2883-2889, https://doi.org/10.1093/nar/gkg378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mokany, E., Bone, S. M., Young, P. E., Doan, T. B., and Todd, A. V. (2010) MNAzymes, a versatile new class of nucleic acid enzymes that can function as biosensors and molecular switches, JACS, 132, 1051-1059, https://doi.org/10.1021/ja9076777.

    Article  CAS  Google Scholar 

  14. Kolpashchikov, D. M. (2007) A binary deoxyribozyme for nucleic acid analysis, ChemBioChem, 8, 2039-2042, https://doi.org/10.1002/cbic.200700384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kolpashchikov, D. M. (2010) Binary probes for nucleic acid analysis, Chem. Rev., 110, 4709-4723, https://doi.org/10.1021/cr900323b.

    Article  CAS  PubMed  Google Scholar 

  16. Cox, A. J., Bengtson, H. N., Rohde, K. H., and Kolpashchikov, D. M. (2016) DNA nanotechnology for nucleic acid analysis: multifunctional molecular DNA machine for RNA detection, Chem. Commun., 52, 14318-14321, https://doi.org/10.1039/C6CC06889H.

    Article  CAS  Google Scholar 

  17. Lyalina, T. A., Goncharova, E. A., Prokofeva, N. Y., Voroshilina, E. S., and Kolpashchikov, D. M. (2019) A DNA minimachine for selective and sensitive detection of DNA, Analyst, 144, 416-420, https://doi.org/10.1039/C8AN02274G.

    Article  CAS  PubMed  ADS  Google Scholar 

  18. Grimes, J., Gerasimova, Y. V., and Kolpashchikov, D. M. (2010) Real-time SNP analysis in secondary-structure-folded nucleic acids, Angew. Chemie, 122, 9134-9137, https://doi.org/10.1002/ange.201004475.

    Article  ADS  Google Scholar 

  19. Gerasimova, Y. V., and Kolpashchikov, D. M. (2013) Detection of bacterial 16S rRNA using a molecular beacon-based X sensor, Biosens. Bioelectron., 41, 386-390, https://doi.org/10.1016/j.bios.2012.08.058.

    Article  CAS  PubMed  Google Scholar 

  20. Horn, S., and Schwenzer, B. (1999) Oligonucleotide facilitators enhance the catalytic activity of RNA-cleaving DNA enzymes, Antisense Nucleic Acid Drug Dev., 9, 465-472, https://doi.org/10.1089/oli.1.1999.9.465.

    Article  CAS  PubMed  Google Scholar 

  21. Kovtunov, E. A., Shkodenko, L. A., Goncharova, E. A., Nedorezova, D. D., Sidorenko, S. V., Koshel, E. I., and Kolpashchikov, D. M. (2019) Towards point of care diagnostics: visual detection of meningitis pathogens directly from cerebrospinal fluid, Chem. Select, 493, 14572-14577, https://doi.org/10.1002/slct.202003869.

    Article  CAS  Google Scholar 

  22. Akhmetova, M. M., Rubel, M. S., Afanasenko, O. S., and Kolpashchikov, D. M. (2022) Barley haplotyping using biplex deoxyribozyme nanomachine, Sens. Act. Rep., 4, 100132, https://doi.org/10.1016/j.snr.2022.100132.

    Article  Google Scholar 

  23. El-Deeb, A. A., Zablotskaya, S. S., Rubel, M. S., Nour, M. A. Y., Kozlovskaya, L. I., Shtro, A. A., Komissarov, A. B., and Kolpashchikov, D. M. (2022) Toward a home test for COVID-19 diagnosis: DNA machine for amplification-free SARS-CoV-2 detection in clinical samples, ChemMedChem, 17, e202200382, https://doi.org/10.1002/cmdc.202200382.

    Article  CAS  PubMed  Google Scholar 

  24. Ateiah, M., Gandalipov, E. R., Rubel, A. A., Rubel, M. S., and Kolpashchikov, D. M. (2023) DNA nanomachine (DNM) Biplex assay for differentiating Bacillus cereus species, IJMS, 24, 4473, https://doi.org/10.3390/ijms24054473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tian, B., Han, Y., Wetterskog, E., Donolato, M., Hansen, M. F., Svedlindh, P., and Strömberg, M. (2018) MicroRNA detection through DNAzyme-mediated disintegration of magnetic nanoparticle assemblies, ACS Sens., 3, 1884-1891, https://doi.org/10.1021/acssensors.8b00850.

    Article  CAS  PubMed  Google Scholar 

  26. Yang, J., Tang, M., Diao, W., Cheng, W., Zhang, Y., and Yan, Y. (2016) Electrochemical strategy for ultrasensitive detection of microRNA based on MNAzyme-mediated rolling circle amplification on a gold electrode, Microchim. Acta, 183, 3061-3067, https://doi.org/10.1007/s00604-016-1958-5.

    Article  CAS  Google Scholar 

  27. Hong, C., Kim, D. M., Baek, A., Chung, H., Jung, W., and Kim, D. E. (2015) Fluorescence-based detection of single-nucleotide changes in RNA using graphene oxide and DNAzyme, Chem. Commun., 51, 5641-5644, https://doi.org/10.1039/C4CC09603G.

    Article  CAS  Google Scholar 

  28. Peeters, B., Daems, D., Van der Donck, T., Delport, F., and Lammertyn, J. (2019) Real-time FO-SPR monitoring of solid-phase DNAzyme cleavage activity for cutting-edge biosensing, ACS App. Mat. Interf., 11, 6759-6768, https://doi.org/10.1021/acsami.8b18756.

    Article  CAS  Google Scholar 

  29. Ren, K., Wu, J., Ju, H., and Yan, F. (2015) Target-driven triple-binder assembly of MNAzyme for amplified electrochemical immunosensing of protein biomarker, Anal. Chem., 87, 1694-1700, https://doi.org/10.1021/ac504277z.

    Article  CAS  PubMed  Google Scholar 

  30. Rubel, M., Zablotskaya, S., Pokatova, O., El-Deeb, A., Ateiah, M., Gorbenko, D., Shkodenko, L., and Kolpashchikov, D. M. (2022) DNA-nanomachines for nucleic acid detection, Proc. BGRS/SB-2022, 355-356, https://doi.org/10.18699/SBB-2022-200.

  31. Goodman, M. F., and Fygenson, D. K. (1998) DNA polymerase fidelity: from genetics toward a biochemical understanding, Genetics, 148, 1475-1482, https://doi.org/10.1093/genetics/148.4.1475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mokany, E., and Todd, A. V (2013) MNAzyme qPCR: A Superior Tool for Multiplex qPCR, Nucleic Acid Detect. Methods Protocols (Kolpashchikov, D. M., and Gerasimova, Y. V.) Totowa, NJ, USA, Humana Press, pp. 31-49, https://doi.org/10.1007/978-1-62703-535-4_3.

  33. Tan, L. Y., Walker, S. M., Lonergan, T., Lima, N. E., Todd, A. V., and Mokany, E. (2017) Superior multiplexing capacity of PlexPrimers enables sensitive and specific detection of SNPs and clustered mutations in qPCR, PLoS One, 12, e0170087, https://doi.org/10.1371/journal.pone.0170087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xiong, H., Veedu, R. N., and Diermeier, S. D. (2021) Recent advances in oligonucleotide therapeutics in oncology, IJMS, 22, 3295, https://doi.org/10.3390/ijms22073295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ma, C. C., Wang, Z. L., Xu, T., He, Z. Y., and Wei, Y. Q. (2020) The approved gene therapy drugs worldwide: from 1998 to 2019, Biotech. Adv., 40, 107502, https://doi.org/10.1016/j.biotechadv.2019.107502.

    Article  CAS  Google Scholar 

  36. Nedorezova, D. D., Dubovichenko, M. V., Belyaeva, E. P., Grigorieva, E. D., Peresadina, A. V., and Kolpashchikov, D. M. (2022) Specificity of oligonucleotide gene therapy (OGT) agents, Theranostics, 12, 7132-7157, https://doi.org/10.7150/thno.77830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Demidov, V. V., and Frank-Kamenetskii, M. D. (2004) Two sides of the coin: affinity and specificity of nucleic acid interactions, Trends Biochem. Sci., 29, 62-71, https://doi.org/10.1016/j.tibs.2003.12.007.

    Article  CAS  PubMed  Google Scholar 

  38. Khachigian, L. M. (2019) Deoxyribozymes as catalytic nanotherapeutic agents, Cancer Res., 79, 879-888, https://doi.org/10.1158/0008-5472.CAN-18-2474.

    Article  CAS  PubMed  Google Scholar 

  39. Purath, U., Ibrahim, R., Zeitvogel, J., Renz, H., Runkel, F., Schmidts, T., Dobler, D., Werfel, T., Müller, A., and Garn, H. (2016) Efficacy of T-cell transcription factor-specific DNAzymes in murine skin inflammation models, J. Allergy Clin. Immol., 137, 644-647, https://doi.org/10.1016/j.jaci.2015.09.022.

    Article  CAS  Google Scholar 

  40. Garn, H., and Renz, H. (2017) GATA-3-specific DNAzyme - A novel approach for stratified asthma therapy, Eur. J. Immunol., 47, 22-30, https://doi.org/10.1002/eji.201646450.

    Article  CAS  PubMed  Google Scholar 

  41. Greulich, T., Hohlfeld, J. M., Neuser, P., Lueer, K., Klemmer, A., Schade-Brittinger, C., Harnisch, S., Garn, H., Renz, H., Homburg, U., Renz, J., Kirsten, A., Pedersen, F., Muller, M., Vogelmeier, C. F., and Watz, H. (2018) A GATA3-specific DNAzyme attenuates sputum eosinophilia in eosinophilic COPD patients: a feasibility randomized clinical trial, Resp. Res., 19, 55, https://doi.org/10.1186/s12931-018-0751-x.

    Article  CAS  Google Scholar 

  42. Fokina, A. A., Chelobanov, B. P., Fujii, M., and Stetsenko, D. A. (2017) Delivery of therapeutic RNA-cleaving oligodeoxyribonucleotides (deoxyribozymes): from cell culture studies to clinical trials, Exp. Opin. Drug Deliv., 14, 1077-1089, https://doi.org/10.1080/17425247.2017.1266326.

    Article  CAS  Google Scholar 

  43. Zhang, J. (2018) RNA-cleaving DNAzymes: Old catalysts with new tricks for intracellular and in vivo applications, Catalysts, 8, 550, https://doi.org/10.3390/catal8110550.

    Article  CAS  Google Scholar 

  44. Xiao, Y., Shi, K., Qu, Y., Chu, B., and Qian, Z. (2019) Engineering nanoparticles for targeted delivery of nucleic acid therapeutics in tumor, Mol. Ther. Met. Clin. Dev., 12, 1-18, https://doi.org/10.1016/j.omtm.2018.09.002.

    Article  CAS  Google Scholar 

  45. Larcher, L. M., Pitout, I. L., Keegan, N. P., Veedu, R. N., and Fletcher, S. (2023) DNAzymes: expanding the potential of nucleic acid therapeutics, Nucleic Acid Ther., 33, 178-192, https://doi.org/10.1089/nat.2022.0066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, Y., Nguyen, K., Spitale, R. C., and Chaput, J. C. (2021) A biologically stable DNAzyme that efficiently silences gene expression in cells, Nat. Chem., 13, 319-326, https://doi.org/10.1038/s41557-021-00645-x.

    Article  CAS  PubMed  Google Scholar 

  47. Nguyen, K., Malik, T. N., and Chaput, J. C. (2023) Chemical evolution of an autonomous DNAzyme with allele-specific gene silencing activity, Nat. Commun., 14, 2413, https://doi.org/10.1038/s41467-023-38100-9.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  48. Taylor, A. I., Wan, C. J. K., Donde, M. J., Peak-Chew, S.-Y., and Holliger, P. (2022) A modular XNAzyme cleaves long, structured RNAs under physiological conditions and enables allele-specific gene silencing, Nat. Chem., 14, 1295-1305, https://doi.org/10.1038/s41557-022-01021-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nedorezova, D. D., Fakhardo, A. F., Molden, T. A., and Kolpashchikov, D. M. (2020) Deoxyribozyme-based DNA machines for cancer therapy, ChemBioChem, 21, 607-611, https://doi.org/10.1002/cbic.201900525.

    Article  CAS  PubMed  Google Scholar 

  50. Nedorezova, D. D., Fakhardo, A. F., Nemirich, D. V., Bryushkova, E. A., and Kolpashchikov, D. M. (2019) Towards DNA nanomachines for cancer treatment: achieving selective and efficient cleavage of folded RNA, Angew. Chem. Int. Ed., 58, 4654-4658, https://doi.org/10.1002/anie.201900829.

    Article  CAS  Google Scholar 

  51. Spelkov, A. A., Goncharova, E. A., Savin, A. M., and Kolpashchikov, D. M. (2020) Bifunctional RNA-targeting deoxyribozyme nanodevice as a potential theranostic agent, Chemistry, 26, 3489-3493, https://doi.org/10.1002/chem.201905528.

    Article  CAS  PubMed  Google Scholar 

  52. Molden, T. A., Niccum, C. T., and Kolpashchikov, D. M. (2020) Cut and paste for cancer treatment: a DNA nanodevice that cuts out an RNA marker sequence to activate a therapeutic function, Angew. Chem. Int. Ed., 59, 21190-21194, https://doi.org/10.1002/anie.202006384.

    Article  CAS  Google Scholar 

  53. Stojanovic, M. N., Mitchell, T. E., and Stefanovic, D. (2002) Deoxyribozyme-based logic gates, JACS, 124, 3555-3561, https://doi.org/10.1021/ja016756v.

    Article  CAS  Google Scholar 

  54. Gomes de Oliveira, A. G., Dubovichenko, M. V., ElDeeb, A. A., Wanjohi, J., Zablotskaya, S., and Kolpashchikov, D. M. (2021) RNA-Cleaving DNA thresholder controlled by concentrations of miRNA cancer marker, ChemBioChem, 22, 1750-1754, https://doi.org/10.1002/cbic.202000769.

    Article  CAS  PubMed  Google Scholar 

  55. He, M., He, M., Nie, C., Yi, J., Zhang, J., Chen, T., and Chu, X. (2021) mRNA-activated multifunctional DNAzyme nanotweezer for intracellular mRNA sensing and gene therapy, ACS Appl. Mater. Interfaces, 13, 8015-8025, https://doi.org/10.1021/acsami.0c21601.

    Article  CAS  PubMed  Google Scholar 

  56. Huang, Z., Wang, X., Wu, Z., and Jiang, J.-H. (2022) Recent advances on DNAzyme-based sensing, Chem. Asian J., 17, e202101414, https://doi.org/10.1002/asia.202101414.

    Article  CAS  PubMed  Google Scholar 

  57. Wang, B., Wang, M., Peng, F., Fu, X., Wen, M., Shi, Y., Chen, M., Ke, G., and Zhang, X.-B. (2023) Construction and application of DNAzyme-based nanodevices, Chem. Res. Chin Uni., 39, 42-60, https://doi.org/10.1007/s40242-023-2334-8.

    Article  CAS  Google Scholar 

  58. Bolduev, O. L., Gribas, A. V., Vdovenko, M. M., and Sakharov, I. Yu. (2018) Chemiluminescent detection of HIV DNA based on allosteric activation of peroxidase-like DNAzyme [in Russian], Vestnik Mos. Univ. Ser. Chem., 59, 78-84.

    Google Scholar 

  59. Vorobieva, M. A., Davidova, A. S., and Veniaminova, A. G. (2011) Artifitial ribozymes “hummerhead”: design and application [in Russian], Usp. Khim., 80, 139-156.

    Google Scholar 

  60. Kirichenko, A., Bryushkova, E., Dedkov, V., and Dolgova, A. (2023) A novel DNAzyme-based fluorescent biosensor for detection of RNA-containing Nipah henipavirus, Biosensors (Basel), 13, 252, https://doi.org/10.3390/bios13020252.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to D. M. Kolpashchikov and E. I. Koshel for discussion, critical reading of the manuscript, and valuable comments and to the Chromas Core Facility (Research Park, St. Petersburg State University) for technical assistance.

Funding

D.D.N. and M.S.R. were supported by the Ministry of Science and Higher Education of the Russian Federation (project FSER-2022-0009). A.A.R. was supported by the St. Petersburg State University (project no. 95444727).

Author information

Authors and Affiliations

Authors

Contributions

D.D.N. prepared the original draft of manuscript, M.S.R. and A.A.R. wrote and edited the manuscript; D.D.N. and M.S.R. prepared the figures.

Corresponding author

Correspondence to Aleksandr A. Rubel.

Ethics declarations

This work does not contain any studies involving human and animal subjects. The authors of this work declare that they have no conflicts of interest.

Additional information

Translated from Uspekhi Biologicheskoi Khimii, 2024, Vol. 64, pp. 479-502.

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nedorezova, D.D., Rubel, M.S. & Rubel, A.A. Multicomponent DNAzyme Nanomachines: Structure, Applications, and Prospects. Biochemistry Moscow 89 (Suppl 1), S249–S261 (2024). https://doi.org/10.1134/S0006297924140141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297924140141

Keywords

Navigation