Skip to main content
Log in

Post-Translational Oxidative Modifications of Hemostasis Proteins: Structure, Function, and Regulation

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Reactive oxygen species (ROS) are constantly generated in a living organism. An imbalance between the amount of generated reactive species in the body and their destruction leads to the development of oxidative stress. Proteins are extremely vulnerable targets for ROS molecules, which can cause oxidative modifications of amino acid residues, thus altering structure and function of intra- and extracellular proteins. The current review considers the effect of oxidation on the structural rearrangements and functional activity of hemostasis proteins: coagulation system proteins such as fibrinogen, prothrombin/thrombin, factor VII/VIIa; anticoagulant proteins – thrombomodulin and protein C; proteins of the fibrinolytic system such as plasminogen, tissue plasminogen activator and plasminogen activator inhibitor-1. Structure and function of the proteins, oxidative modifications, and their detrimental consequences resulting from the induced oxidation or oxidative stress in vivo are described. Possible effects of oxidative modifications of proteins in vitro and in vivo leading to disruption of the coagulation and fibrinolysis processes are summarized and systematized, and the possibility of a compensatory mechanism in  maintaining hemostasis under oxidative stress is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Abbreviations

APC:

activated protein C

Fg:

fibrinogen

Thr:

thrombin

FVII:

coagulation factor VII

TM:

thrombomodulin

HOCl:

hypochlorous acid

Met:

methionine

MetO:

methionine sulfoxide

MPO:

myeloperoxidase

PC:

protein C

PLG:

plasminogen

PL:

plasmin

PAI-1:

PLG activator inhibitor type 1

PTOMs:

post-translational oxidative modifications

ROS:

reactive oxygen species

SOD:

superoxide dismutase

TF:

tissue factor

tPA:

tissue plasminogen activator

uPA:

urokinase plasminogen activator

References

  1. Lankin, V. Z., Tikhaze, A. K., and Melkumyants, A. M. (2022) Dicarbonyl-dependent modification of LDL as a key factor of endothelial dysfunction and atherosclerotic vascular wall damage, Antioxidants (Basel), 11, 1565, https://doi.org/10.3390/antiox11081565.

    Article  CAS  PubMed  Google Scholar 

  2. Grivenkova, V. G., and Vinogradov, A. D. (2013) Generation of mitochondrial reactive oxygen species [in Russian], Usp. Biol. Khimii, 53, 245-296.

    Google Scholar 

  3. Men’shchikova E. B., Zenkov, N. K. Lankin V. Z., Bondar' I. A., Trufakin V. A. (2013) Oxidative Stress. Pathological Conditions and Diseases [in Russian], Siberian Acad. Publ., Novosibirsk.

  4. Belovolova, L. V. (2020) Reactive oxygen species in aquatic environments (review) [in Russian], Zhurn. Tekhn. Fiz., 129, 923, https://doi.org/10.21883/OS.2020.07.49565.64-20.

    Article  Google Scholar 

  5. Ray, P. D., Huang, B.-W., and Tsuji, Y. (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling, Cellular Signalling, 24, 981-990, https://doi.org/10.1016/j.cellsig.2012.01.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ahire, J. J., Mokashe, N. U., Patil, H. J., and Chaudhari, B. L. (2013) Antioxidative potential of folate producing probiotic lactobacillus helveticus CD6, J. Food Sci. Technol., 50, 26-34, https://doi.org/10.1007/s13197-011-0244-0.

    Article  CAS  PubMed  Google Scholar 

  7. Cheung, E. C., and Vousden, K. H. (2022) The role of ROS in tumour development and progression, Nat. Rev. Cancer, 22, 280-297, https://doi.org/10.1038/s41568-021-00435-0.

    Article  CAS  PubMed  Google Scholar 

  8. Senoner, T., and Dichtl, W. (2019) Oxidative stress in cardiovascular diseases: still a therapeutic target? Nutrients, 11, 2090, https://doi.org/10.3390/nu11092090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wiegman, C. H., Li, F., Ryffel, B., Togbe, D., and Chung, K. F. (2020) Oxidative stress in ozone-induced chronic lung inflammation and emphysema: a facet of chronic obstructive pulmonary disease, Front. Immunol., 11, 1957, https://doi.org/10.3389/fimmu.2020.01957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rendra, E., Riabov, V., Mossel, D. M., Sevastyanova, T., Harmsen, M. C., and Kzhyshkowska, J. (2019) Reactive oxygen species (ROS) in macrophage activation and function in diabetes, Immunobiology, 224, 242-253, https://doi.org/10.1016/j.imbio.2018.11.010.

    Article  CAS  PubMed  Google Scholar 

  11. Berlett, B. S., and Stadtman, E. R. (1997) Protein oxidation in aging, disease, and oxidative stress, J. Biol. Chem., 272, 20313-20316, https://doi.org/10.1074/jbc.272.33.20313.

    Article  CAS  PubMed  Google Scholar 

  12. Tönnies, E., and Trushina, E. (2017) Oxidative stress, synaptic dysfunction, and Alzheimer’s disease, J. Alzheimer’s Dis., 57, 1105-1121, https://doi.org/10.3233/JAD-161088.

    Article  CAS  Google Scholar 

  13. Singh, A., Kukreti, R., Saso, L., and Kukreti, S. (2019) Oxidative stress: a key modulator in neurodegenerative diseases, Molecules, 24, 1583, https://doi.org/10.3390/molecules24081583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Panasenko, O. M., Gorudko, I. V., and Sokolov, A. V. (2013) Hypochlorous acid as a precursor of free radicals in living systems, Biochemistry (Moscow), 78, 1466-1489, https://doi.org/10.1134/S0006297913130075.

    Article  CAS  PubMed  Google Scholar 

  15. Ulfig, A., and Leichert, L. I. (2021) The effects of neutrophil-generated hypochlorous acid and other hypohalous acids on host and pathogens, Cell. Mol. Life Sci., 78, 385-414, https://doi.org/10.1007/s00018-020-03591-y.

    Article  CAS  PubMed  Google Scholar 

  16. McCall, M. R., Carr, A. C., Forte, T. M., and Frei, B. (2001) LDL modified by hypochlorous acid is a potent inhibitor of lecithin-cholesterol acyltransferase activity, Arterioscler. Thromb. Vasc. Biol., 21, 1040-1045, https://doi.org/10.1161/01.ATV.21.6.1040.

    Article  CAS  PubMed  Google Scholar 

  17. Hawkins, C. L., and Davies, M. J. (1999) Hypochlorite-induced oxidation of proteins in plasma: formation of chloramines and nitrogen-centred radicals and their role in protein fragmentation, Biochem. J., 340, 539-548, https://doi.org/10.1042/bj3400539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pattison, D. I., and Davies, M. J. (2001) Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds, Chem. Res. Toxicol., 14, 1453-1464, https://doi.org/10.1021/tx0155451.

    Article  CAS  PubMed  Google Scholar 

  19. Carr, A. C., and Winterbourn, C. C. (1997) Oxidation of neutrophil glutathione and protein thiols by myeloperoxidase-derived hypochlorous acid, Biochem. J., 327, 275-281, https://doi.org/10.1042/bj3270275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Beck-Speier, I., Leuschel, L., Luippold, G., and Maier, K. L. (1988) Proteins released from stimulated neutrophils contain very high levels of oxidized methionine, FEBS Lett., 227, 1-4, https://doi.org/10.1016/0014-5793(88)81401-7.

    Article  CAS  PubMed  Google Scholar 

  21. Nielsen, H. K., Löliger, J., and Hurrell, R. F. (1985) Reactions of proteins with oxidizing lipids: 1. Analytical measurements of lipid oxidation and of Amino acid losses in a whey protein-methyl linolenate model system, Br. J. Nutr., 53, 61-73, https://doi.org/10.1079/BJN19850011.

    Article  CAS  PubMed  Google Scholar 

  22. Stadtman, E. R., and Levine, R. L. (2006) Protein oxidation, Ann. NY Acad. Sci., 899, 191-208, https://doi.org/10.1111/j.1749-6632.2000.tb06187.x.

    Article  ADS  Google Scholar 

  23. Temple, A., Yen, T.-Y., and Gronert, S. (2006) Identification of specific protein carbonylation sites in model oxidations of human serum albumin, J. Am. Soc. Mass Spectrom., 17, 1172-1180, https://doi.org/10.1016/j.jasms.2006.04.030.

    Article  CAS  PubMed  Google Scholar 

  24. Requena, J. R., Levine, R. L., and Stadtman, E. R. (2003) Recent advances in the analysis of oxidized proteins, Amino Acids, 25, 221-226, https://doi.org/10.1007/s00726-003-0012-1.

    Article  CAS  PubMed  Google Scholar 

  25. Fedorova, M., Bollineni, R. C., and Hoffmann, R. (2014) Protein carbonylation as a major hallmark of oxidative damage: update of analytical strategies: protein carbonylation: an analytical update, Mass Spectrom. Rev., 33, 79-97, https://doi.org/10.1002/mas.21381.

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Beal, M. F. (2002) Oxidatively modified proteins in aging and disease, Free Radic. Biol. Med., 32, 797-803, https://doi.org/10.1016/S0891-5849(02)00780-3.

    Article  CAS  PubMed  Google Scholar 

  27. Dalle-Donne, I., Giustarini, D., Colombo, R., Rossi, R., and Milzani, A. (2003) Protein carbonylation in human diseases, Trends Mol. Med., 9, 169-176, https://doi.org/10.1016/S1471-4914(03)00031-5.

    Article  CAS  PubMed  Google Scholar 

  28. Hlaváčková, A., Štikarová, J., Pimková, K., Chrastinová, L., Májek, P., Kotlín, R., Čermák, J., Suttnar, J., and Dyr, J. E. (2017) Enhanced plasma protein carbonylation in patients with myelodysplastic syndromes, Free Radic. Biol. Med., 108, 1-7, https://doi.org/10.1016/j.freeradbiomed.2017.03.007.

    Article  CAS  PubMed  Google Scholar 

  29. Levine, R. L., Mosoni, L., Berlett, B. S., and Stadtman, E. R. (1996) Methionine residues as endogenous antioxidants in proteins, Proc. Natl. Acad. Sci. USA, 93, 15036-15040, https://doi.org/10.1073/pnas.93.26.15036.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  30. Lim, J. M., Kim, G., and Levine, R. L. (2019) Methionine in proteins: It’s not just for protein initiation anymore, Neurochem. Res., 44, 247-257, https://doi.org/10.1007/s11064-017-2460-0.

    Article  CAS  PubMed  Google Scholar 

  31. Aledo, J. C. (2019) Methionine in proteins: the Cinderella of the proteinogenic amino acids, Protein Sci., 28, 1785-1796, https://doi.org/10.1002/pro.3698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rosenfeld, M. A., Yurina, L. V., and Vasilyeva, A. D. (2023) Antioxidant role of methionine-containing intra- and extracellular proteins, Biophys. Rev., 15, 367-383, https://doi.org/10.1007/s12551-023-01056-7.

    Article  CAS  PubMed  Google Scholar 

  33. Griffiths, H. R., Dias, I. H. K., Willetts, R. S., and Devitt, A. (2014) Redox regulation of protein damage in plasma, Redox Biol., 2, 430-435, https://doi.org/10.1016/j.redox.2014.01.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Poole, L. B. (2015) The basics of thiols and cysteines in redox biology and chemistry, Free Radic. Biol. Med., 80, 148-157, https://doi.org/10.1016/j.freeradbiomed.2014.11.013.

    Article  CAS  PubMed  Google Scholar 

  35. Aoyama, K. (2021) Glutathione in the brain, Int. J. Mol. Sci., 22, 5010, https://doi.org/10.3390/ijms22095010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Poole, L. B., Karplus, P. A., and Claiborne, A. (2004) Protein sulfenic acids in redox signaling, Annu. Rev. Pharmacol. Toxicol., 44, 325-347, https://doi.org/10.1146/annurev.pharmtox.44.101802.121735.

    Article  CAS  PubMed  Google Scholar 

  37. Antelmann, H., and Helmann, J. D. (2011) Thiol-based redox switches and gene regulation, Antioxid. Redox Signal., 14, 1049-1063, https://doi.org/10.1089/ars.2010.3400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Forman, H. J., Zhang, H., and Rinna, A. (2009) Glutathione: overview of its protective roles, measurement, and biosynthesis, Mol. Aspects Med., 30, 1-12, https://doi.org/10.1016/j.mam.2008.08.006.

    Article  CAS  PubMed  Google Scholar 

  39. Bourdon, E., Loreau, N., Lagrost, L., and Blache, D. (2005) Differential Effects of cysteine and methionine residues in the antioxidant activity of human serum albumin, Free Radic. Res., 39, 15-20, https://doi.org/10.1080/10715760400024935.

    Article  CAS  PubMed  Google Scholar 

  40. Rozenfel’d, M. A., Yurina, L. V., and Vasil’eva, A. D. (2021) The functional role of protein-borne methionine oxidation: arguments pro et contra [in Russian], Usp. Sovr. Biol., 141, 315-335, https://doi.org/10.31857/S0042132421040050.

    Article  Google Scholar 

  41. Suzuki, S., Kodera, Y., Saito, T., Fujimoto, K., Momozono, A., Hayashi, A., Kamata, Y., and Shichiri, M. (2016) Methionine sulfoxides in serum proteins as potential clinical biomarkers of oxidative stress, Sci. Rep., 6, 38299, https://doi.org/10.1038/srep38299.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  42. Momozono, A., Kodera, Y., Sasaki, S., Nakagawa, Y., Konno, R., and Shichiri, M. (2020) Oxidised Met147 of human serum albumin is a Biomarker of oxidative stress, reflecting glycaemic fluctuations and hypoglycaemia in diabetes, Sci. Rep., 10, 268, https://doi.org/10.1038/s41598-019-57095-2.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  43. Podoplelova, N. A., Sulimov, V. B., Ilin, I. S., Tashilova, A. S., Panteleev, M. A., Ledeneva, I. V., and Shikhaliev, Kh. S. (2020) Blood coagulation in the 21st century: existing knowledge, current strategies for treatment and perspective, Pediatr. Hematol. Oncol. Immunopathol., 19, 139-157, https://doi.org/10.24287/1726-1708-2020-19-1-139-157.

    Article  Google Scholar 

  44. Norris, L. A. (2003) Blood coagulation, Best Pract. Res. Clin. Obstetr. Gynaecol., 17, 369-383, https://doi.org/10.1016/S1521-6934(03)00014-2.

    Article  Google Scholar 

  45. Grover, S. P., and Mackman, N. (2019) Intrinsic pathway of coagulation and thrombosis: insights from animal models, Arterioscler. Thrombos. Vasc. Biol., 39, 331-338, https://doi.org/10.1161/ATVBAHA.118.312130.

    Article  CAS  Google Scholar 

  46. Butylin, A. A., Panteleev, M. A., and Ataullakhanov, F. I. (2007) Spatial dynamics of blood coagulation, Russ. Khim. Zhurn., 51, 45-50.

    CAS  Google Scholar 

  47. Ataullakhanov, F. I., and Rumyantsev, A. G. (2018) New insights into the blood clotting, Russ. J. Child. Hematol. Oncol., 5, 13-22, https://doi.org/10.17650/2311-1267-2018-5-3-13-22.

    Article  Google Scholar 

  48. Medved, L., and Weisel, J. W. (2022) The story of the fibrin(ogen) ΑC-domains: evolution of our view on their structure and interactions, Thrombos. Haemost., 122, 1265-1278, https://doi.org/10.1055/a-1719-5584.

    Article  Google Scholar 

  49. Weisel, J. W., and Litvinov, R. I. (2017) Fibrin Formation, Structure and Properties, in Fibrous Proteins: Structures and Mechanisms (Parry, D. A. D., and Squire, J. M., eds) Springer International Publishing, Cham, pp. 405-456, https://doi.org/10.1007/978-3-319-49674-0_13.

  50. Litvinov, R. I., Pieters, M., De Lange-Loots, Z., and Weisel, J. W. (2021) Fibrinogen and Fibrin, in Macromolecular Protein Complexes III: Structure and Function (Harris, J. R., and Marles-Wright, J., eds) Springer International Publishing, Cham, pp. 471-501, https://doi.org/10.1007/978-3-030-58971-4_15.

  51. Shacter, E., Williams, J. A., Lim, M., and Levine, R. L. (1994) Differential susceptibility of plasma proteins to oxidative modification: examination by western blot immunoassay, Free Radic. Biol. Med., 17, 429-437, https://doi.org/10.1016/0891-5849(94)90169-4.

    Article  CAS  PubMed  Google Scholar 

  52. Mañucat-Tan, N., Zeineddine Abdallah, R., Kaur, H., Saviane, D., Wilson, M. R., and Wyatt, A. R. (2021) Hypochlorite-induced aggregation of fibrinogen underlies a novel antioxidant role in blood plasma, Redox Biol., 40, 101847, https://doi.org/10.1016/j.redox.2020.101847.

    Article  CAS  PubMed  Google Scholar 

  53. Weigandt, K. M., White, N., Chung, D., Ellingson, E., Wang, Y., Fu, X., and Pozzo, D. C. (2012) Fibrin clot structure and mechanics associated with specific oxidation of methionine residues in fibrinogen, Biophys J., 103, 2399-2407, https://doi.org/10.1016/j.bpj.2012.10.036.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  54. Yurina, L., Vasilyeva, A., Indeykina, M., Bugrova, A., Biryukova, M., Kononikhin, A., Nikolaev, E., and Rosenfeld, M. (2019) Ozone-induced damage of fibrinogen molecules: identification of oxidation sites by high-resolution mass spectrometry, Free Radic. Res., 53, 430-455, https://doi.org/10.1080/10715762.2019.1600686.

    Article  CAS  PubMed  Google Scholar 

  55. Martinez, M., Weisel, J. W., and Ischiropoulos, H. (2013) Functional impact of oxidative posttranslational modifications on fibrinogen and fibrin clots, Free Radic. Biol. Med., 65, 411-418, https://doi.org/10.1016/j.freeradbiomed.2013.06.039.

    Article  CAS  PubMed  Google Scholar 

  56. Sovová, Ž., Štikarová, J., Kaufmanová, J., Májek, P., Suttnar, J., Šácha, P., Malý, M., and Dyr, J. E. (2020) Impact of posttranslational modifications on atomistic structure of fibrinogen, PLoS One, 15, e0227543, https://doi.org/10.1371/journal.pone.0227543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yurina, L. V., Vasilyeva, A. D., Kononenko, V. L., Bugrova, A. E., Indeykina, M. I., Kononikhin, A. S., Nikolaev, E. N., and Rosenfeld, M. A. (2020) The structural-functional damage of fibrinogen oxidized by hydrogen peroxide, Dokl. Biochem. Biophys., 492, 130-134, https://doi.org/10.1134/S1607672920020167.

    Article  CAS  PubMed  Google Scholar 

  58. White, N. J., Wang, Y., Fu, X., Cardenas, J. C., Martin, E. J., Brophy, D. F., Wade, C. E., Wang, X., St. John, A. E., Lim, E. B., Stern, S. A., Ward, K. R., López, J. A., and Chung, D. (2016) Post-translational oxidative modification of fibrinogen is associated with coagulopathy after traumatic injury, Free Radic. Biol. Med., 96, 181-189, https://doi.org/10.1016/j.freeradbiomed.2016.04.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rosenfeld, M. A., Shchegolikhin, A. N., Bychkova, A. V., Leonova, V. B., Biryukova, M. I., and Kostanova, E. A. (2014) Ozone-induced oxidative modification of fibrinogen: role of the D regions, Free Radic. Biol. Med., 77, 106-120, https://doi.org/10.1016/j.freeradbiomed.2014.08.018.

    Article  CAS  PubMed  Google Scholar 

  60. Paton, L. N., Mocatta, T. J., Richards, A. M., and Winterbourn, C. C. (2010) Increased thrombin-induced polymerization of fibrinogen associated with high protein carbonyl levels in plasma from patients post myocardial infarction, Free Radic. Biol. Med., 48, 223-229, https://doi.org/10.1016/j.freeradbiomed.2009.10.044.

    Article  CAS  PubMed  Google Scholar 

  61. De Vries, J. J., Snoek, C. J. M., Rijken, D. C., and de Maat, M. P. M. (2020) Effects of post-translational modifications of fibrinogen on clot formation, clot structure, and fibrinolysis: a systematic review, Arterioscler. Thromb. Vasc. Biol., 40, 554-569, https://doi.org/10.1161/ATVBAHA.119.313626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Štikarová, J., Kotlín, R., Riedel, T., Suttnar, J., Pimková, K., Chrastinová, L., and Dyr, J. E. (2013) The effect of reagents mimicking oxidative stress on fibrinogen function, Sci. World J., 2013, 1-8, https://doi.org/10.1155/2013/359621.

    Article  CAS  Google Scholar 

  63. Undas, A., Szułdrzynski, K., Stepien, E., Zalewski, J., Godlewski, J., Tracz, W., Pasowicz, M., and Zmudka, K. (2008) Reduced clot permeability and susceptibility to lysis in patients with acute coronary syndrome: effects of inflammation and oxidative stress, Atherosclerosis, 196, 551-557, https://doi.org/10.1016/j.atherosclerosis.2007.05.028.

    Article  CAS  PubMed  Google Scholar 

  64. Tsurupa, G., Hantgan, R. R., Burton, R. A., Pechik, I., Tjandra, N., and Medved, L. (2009) Structure, stability, and interaction of the fibrin(ogen) ΑC-domains, Biochemistry, 48, 12191-12201, https://doi.org/10.1021/bi901640e.

    Article  CAS  PubMed  Google Scholar 

  65. Zhmurov, A., Protopopova, A. D., Litvinov, R. I., Zhukov, P., Mukhitov, A. R., Weisel, J. W., and Barsegov, V. (2016) Structural basis of interfacial flexibility in fibrin oligomers, Structure, 24, 1907-1917, https://doi.org/10.1016/j.str.2016.08.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Van Patten, S. M., Hanson, E., Bernasconi, R., Zhang, K., Manavalan, P., Cole, E. S., McPherson, J. M., and Edmunds, T. (1999) Oxidation of methionine residues in antithrombin, J. Biol. Chem., 274, 10268-10276, https://doi.org/10.1074/jbc.274.15.10268.

    Article  CAS  PubMed  Google Scholar 

  67. Levine, R., Moskovitz, J., and Stadtman, E. (2001) Oxidation of methionine in proteins: roles in antioxidant defense and cellular regulation, IUBMB Life, 50, 301-307, https://doi.org/10.1080/713803735.

    Article  Google Scholar 

  68. Vasilyeva, A., Yurina, L., Shchegolikhin, A., Indeykina, M., Bugrova, A., Kononikhin, A., Nikolaev, E., and Rosenfeld, M. (2020) The structure of blood coagulation factor XIII is adapted to oxidation, Biomolecules, 10, 914, https://doi.org/10.3390/biom10060914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vasilyeva, A., Yurina, L., Ivanov, V., Azarova, D., Gavrilina, E., Indeykina, M., Bugrova, A., Kononikhin, A., Nikolaev, E., and Rosenfeld, M. (2022) The effect of hypochlorite- and peroxide-induced oxidation of plasminogen on damage to the structure and biological activity, Int. J. Biol. Macromol., 206, 64-73, https://doi.org/10.1016/j.ijbiomac.2022.02.128.

    Article  CAS  PubMed  Google Scholar 

  70. Chen, R., and Doolittle, R. F. (1971) γ-γ Cross-linking sites in human and bovine fibrin, Biochemistry, 10, 4486-4491, https://doi.org/10.1021/bi00800a021.

    Article  CAS  Google Scholar 

  71. Bode, W. (2006) Structure and interaction modes of thrombin, Blood Cells Mol. Dis., 36, 122-130, https://doi.org/10.1016/j.bcmd.2005.12.027.

    Article  CAS  PubMed  Google Scholar 

  72. Jackson, C. M., and Nemerson, Y. (1980) Blood coagulation, Annu. Rev. Biochem., 49, 765-811, https://doi.org/10.1146/annurev.bi.49.070180.004001.

    Article  CAS  PubMed  Google Scholar 

  73. Page, M. J., and Di Cera, E. (2008) Serine peptidases: classification, structure and function, Cell. Mol. Life Sci., 65, 1220-1236, https://doi.org/10.1007/s00018-008-7565-9.

    Article  CAS  PubMed  Google Scholar 

  74. Di Cera, E. (2008) Thrombin, Mol. Aspects Med., 29, 203-254, https://doi.org/10.1016/j.mam.2008.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pechik, I., Madrazo, J., Mosesson, M. W., Hernandez, I., Gilliland, G. L., and Medved, L. (2004) Crystal structure of the complex between thrombin and the central “E” region of fibrin, Proc. Natl. Acad. Sci. USA, 101, 2718-2723, https://doi.org/10.1073/pnas.0303440101.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  76. Xu, H., Bush, L. A., Pineda, A. O., Caccia, S., and Di Cera, E. (2005) Thrombomodulin changes the molecular surface of interaction and the rate of complex formation between thrombin and protein C, J. Biol. Chem., 280, 7956-7961, https://doi.org/10.1074/jbc.M412869200.

    Article  CAS  PubMed  Google Scholar 

  77. Sheehan, J. P., and Sadler, J. E. (1994) Molecular mapping of the heparin-binding exosite of thrombin, Proc. Natl. Acad. Sci. USA, 91, 5518-5522, https://doi.org/10.1073/pnas.91.12.5518.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  78. Li, W., Johnson, D. J. D., Esmon, C. T., and Huntington, J. A. (2004) Structure of the antithrombin-thrombin-heparin ternary complex reveals the antithrombotic mechanism of heparin, Nat. Struct. Mol. Biol., 11, 857-862, https://doi.org/10.1038/nsmb811.

    Article  CAS  PubMed  Google Scholar 

  79. De Cristofaro, R., and Landolfi, R. (2000) Oxidation of human alpha-thrombin by the myeloperoxidase-H2O2-chloride system: structural and functional effects, Thrombos. Haemost., 83, 253-261, https://doi.org/10.1055/s-0037-1613796.

    Article  CAS  Google Scholar 

  80. Eigenbrot, C. (2002) Structure, function, and activation of coagulation factor VII, Curr. Protein Pept. Sci., 3, 287-299, https://doi.org/10.2174/1389203023380675.

    Article  CAS  PubMed  Google Scholar 

  81. Morrissey, J., Macik, B., Neuenschwander, P., and Comp, P. (1993) Quantitation of activated factor VII levels in plasma using a tissue factor mutant selectively deficient in promoting factor VII activation, Blood, 81, 734-744, https://doi.org/10.1182/blood.V81.3.734.734.

    Article  CAS  PubMed  Google Scholar 

  82. Kondo, S., and Kisiel, W. (1987) Regulation of factor VIIA activity in Plasma: evidence that antithrombin III is the sole plasma protease inhibitor of human factor VIIa, Thromb. Res., 46, 325-335, https://doi.org/10.1016/0049-3848(87)90294-5.

    Article  CAS  PubMed  Google Scholar 

  83. Furie, B., and Furie, B. C. (1988) The molecular basis of blood coagulation, Cell, 53, 505-518, https://doi.org/10.1016/0092-8674(88)90567-3.

    Article  CAS  PubMed  Google Scholar 

  84. Gajsiewicz, J., and Morrissey, J. (2015) Structure-function relationship of the interaction between tissue factor and factor VIIa, Semin. Thromb. Hemost., 41, 682-690, https://doi.org/10.1055/s-0035-1564044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pike, A. C. W., Brzozowski, A. M., Roberts, S. M., Olsen, O. H., and Persson, E. (1999) Structure of human factor VIIa and its implications for the triggering of blood coagulation, Proc. Natl. Acad. Sci. USA, 96, 8925-8930, https://doi.org/10.1073/pnas.96.16.8925.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  86. Bernardi, F., and Mariani, G. (2021) Biochemical, molecular and clinical aspects of coagulation factor VII and its role in hemostasis and thrombosis, Haematologica, 106, 351-362, https://doi.org/10.3324/haematol.2020.248542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Persson, E., Nielsen, L. S., and Olsen, O. H. (2001) Substitution of aspartic acid for methionine-306 in factor VIIa abolishes the allosteric linkage between the active site and the binding interface with tissue factor, Biochemistry, 40, 3251-3256, https://doi.org/10.1021/bi001612z.

    Article  CAS  PubMed  Google Scholar 

  88. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli, P., and Hassabis, D. (2021) Highly accurate protein structure prediction with AlphaFold, Nature, 596, 583-589, https://doi.org/10.1038/s41586-021-03819-2.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  89. Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D., Stroe, O., Wood, G., Laydon, A., Žídek, A., Green, T., Tunyasuvunakool, K., Petersen, S., Jumper, J., Clancy, E., Green, R., Vora, A., Lutfi, M., Figurnov, M., Cowie, A., Hobbs, N., Kohli, P., Kleywegt, G., Birney, E., Hassabis, D., and Velankar, S. (2022) AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models, Nucleic Acids Res., 50, D439-D444, https://doi.org/10.1093/nar/gkab1061.

    Article  CAS  PubMed  Google Scholar 

  90. Kornfelt, T., Persson, E., and Palm, L. (1999) Oxidation of methionine residues in coagulation factor VIIa, Arch. Biochem. Biophys., 363, 43-54, https://doi.org/10.1006/abbi.1998.1071.

    Article  CAS  PubMed  Google Scholar 

  91. Soenderkaer, S., Carpenter, J. F., Van De Weert, M., Hansen, L. L., Flink, J., and Frokjaer, S. (2004) Effects of sucrose on RFVIIa aggregation and methionine oxidation, Eur. J. Pharmaceut. Sci., 21, 597-606, https://doi.org/10.1016/j.ejps.2003.12.010.

    Article  CAS  Google Scholar 

  92. Dickinson, C. D., Kelly, C. R., and Ruf, W. (1996) Identification of surface residues mediating tissue factor binding and catalytic function of the Serine protease factor VIIa, Proc. Natl. Acad. Sci. USA, 93, 14379-14384, https://doi.org/10.1073/pnas.93.25.14379.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  93. Esmon, C. T. (1989) The roles of protein C and thrombomodulin in the regulation of blood coagulation, J. Biol. Chem., 264, 4743-4746, https://doi.org/10.1016/S0021-9258(18)83649-3.

    Article  CAS  PubMed  Google Scholar 

  94. Suzuki, K., Kusumoto, H., Deyashiki, Y., Nishioka, J., Maruyama, I., Zushi, M., Kawahara, S., Honda, G., Yamamoto, S., and Horiguchi, S. (1987) Structure and expression of human thrombomodulin, a thrombin receptor on endothelium acting as a cofactor for protein C activation, EMBO J., 6, 1891-1897, https://doi.org/10.1002/j.1460-2075.1987.tb02448.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Stearns-Kurosawa, D. J., Kurosawa, S., Mollica, J. S., Ferrell, G. L., and Esmon, C. T. (1996) The endothelial cell protein C receptor augments protein C activation by the thrombin-thrombomodulin complex, Proc. Natl. Acad. Sci. USA, 93, 10212-10216, https://doi.org/10.1073/pnas.93.19.10212.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  96. Zushi, M., Gomi, K., Yamamoto, S., Maruyama, I., Hayashi, T., and Suzuki, K. (1989) The last three consecutive epidermal growth factor-like structures of human thrombomodulin comprise the minimum functional domain for protein C-activating cofactor activity and anticoagulant activity, J. Biol. Chem., 264, 10351-10353, https://doi.org/10.1016/S0021-9258(18)81626-X.

    Article  CAS  PubMed  Google Scholar 

  97. Li, Y.-H., Kuo, C.-H., Shi, G.-Y., and Wu, H.-L. (2012) The role of thrombomodulin lectin-like domain in inflammation, J. Biomed. Sci., 19, 34, https://doi.org/10.1186/1423-0127-19-34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Boron, M., Hauzer-Martin, T., Keil, J., and Sun, X.-L. (2022) Circulating thrombomodulin: release mechanisms, measurements, and levels in diseases and medical procedures, TH Open, 06, e194-e212, https://doi.org/10.1055/a-1801-2055.

    Article  Google Scholar 

  99. Wood, M. J., Becvar, L. A., Prieto, J. H., Melacini, G., and Komives, E. A. (2003) NMR structures reveal how oxidation inactivates thrombomodulin, Biochemistry, 42, 11932-11942, https://doi.org/10.1021/bi034646q.

    Article  CAS  PubMed  Google Scholar 

  100. Prieto, J. H., Sampoli Benitez, B. A., Melacini, G., Johnson, D. A., Wood, M. J., and Komives, E. A. (2005) Dynamics of the fragment of thrombomodulin containing the fourth and fifth epidermal growth factor-like domains correlate with function, Biochemistry, 44, 1225-1233, https://doi.org/10.1021/bi0478852.

    Article  CAS  PubMed  Google Scholar 

  101. Glaser, C. B., Morser, J., Clarke, J. H., Blasko, E., McLean, K., Kuhn, I., Chang, R. J., Lin, J. H., Vilander, L., and Andrews, W. H. (1992) Oxidation of a specific methionine in thrombomodulin by activated neutrophil products blocks cofactor activity. A potential rapid mechanism for modulation of coagulation, J. Clin. Invest., 90, 2565-2573, https://doi.org/10.1172/JCI116151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Dayal, S., Gu, S. X., Hutchins, R. D., Wilson, K. M., Wang, Y., Fu, X., and Lentz, S. R. (2015) Deficiency of superoxide dismutase impairs protein c activation and enhances susceptibility to experimental thrombosis, Arterioscler. Thromb. Vasc. Biol., 35, 1798-1804, https://doi.org/10.1161/ATVBAHA.115.305963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wood, M. J., Helena Prieto, J., and Komives, E. A. (2005) Structural and functional consequences of methionine oxidation in thrombomodulin, Biochim. Biophys. Acta Proteins Proteomics, 1703, 141-147, https://doi.org/10.1016/j.bbapap.2004.09.007.

    Article  CAS  Google Scholar 

  104. Gruber, A., and Griffin, J. (1992) Direct detection of activated protein C in blood from human subjects, Blood, 79, 2340-2348, https://doi.org/10.1182/blood.V79.9.2340.2340.

    Article  CAS  PubMed  Google Scholar 

  105. Stojanovski, B. M., Pelc, L. A., and Di Cera, E. (2020) Role of the activation peptide in the mechanism of protein C activation, Sci. Rep., 10, 11079, https://doi.org/10.1038/s41598-020-68078-z.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  106. Branson, H. E., Marble, R., Katz, J., and Griffin, J. H. (1983) Inherited protein C deficiency and coumarin-responsive chronic relapsing purpura fulminans in a newborn infant, Lancet, 322, 1165-1168, https://doi.org/10.1016/S0140-6736(83)91216-3.

    Article  Google Scholar 

  107. Griffin, J. H., Evatt, B., Zimmerman, T. S., Kleiss, A. J., and Wideman, C. (1981) Deficiency of protein C in congenital thrombotic disease, J. Clin. Invest., 68, 1370-1373, https://doi.org/10.1172/JCI110385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Reitsma, P. (1996) Protein C deficiency: summary of the 1995 database update, Nucleic Acids Res., 24, 157-159, https://doi.org/10.1093/nar/24.1.157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Fay, P. J., Smudzin, T. M., and Walker, F. J. (1991) Activated protein C-catalyzed inactivation of human factor VIII and factor VIIIa. Identification of cleavage sites and correlation of proteolysis with cofactor activity, J. Biol. Chem., 266, 20139-20145, https://doi.org/10.1016/S0021-9258(18)54901-2.

    Article  CAS  PubMed  Google Scholar 

  110. Kalafatis, M., Rand, M. D., and Mann, K. G. (1994) The mechanism of inactivation of human factor V and human factor Va by activated protein C, J. Biol. Chem., 269, 31869-31880, https://doi.org/10.1016/S0021-9258(18)31776-9.

    Article  CAS  PubMed  Google Scholar 

  111. Walker, F. J., and Fay, P. J. (1992) Regulation of blood coagulation by the protein C system, FASEB J., 6, 2561-2567, https://doi.org/10.1096/fasebj.6.8.1317308.

    Article  CAS  PubMed  Google Scholar 

  112. Lu, Y., Biswas, I., Villoutreix, B. O., and Rezaie, A. R. (2021) Role of Gly197 in the structure and function of protein C, Biochim. Biophys. Acta Gen. Subj., 1865, 129892, https://doi.org/10.1016/j.bbagen.2021.129892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Mather, T., Oganessyan, V., Hof, P., Huber, R., Foundling, S., Esmon, C., and Bode, W. (1996) The 2.8 A crystal structure of Gla-domainless activated protein C, EMBO J., 15, 6822-6831, https://doi.org/10.1002/j.1460-2075.1996.tb01073.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yang, L., Manithody, C., and Rezaie, A. R. (2006) Activation of protein C by the thrombin-thrombomodulin complex: cooperative roles of Arg-35 of thrombin and Arg-67 of protein C, Proc. Natl. Acad. Sci. USA, 103, 879-884, https://doi.org/10.1073/pnas.0507700103.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  115. Esmon, C. T. (2000) Regulation of blood coagulation, Biochim. Biophys. Acta Protein Structure Mol. Enzymol., 1477, 349-360, https://doi.org/10.1016/S0167-4838(99)00266-6.

    Article  CAS  Google Scholar 

  116. Mohan Rao, L. V., Esmon, C. T., and Pendurthi, U. R. (2014) Endothelial cell protein C receptor: a multiliganded and multifunctional receptor, Blood, 124, 1553-1562, https://doi.org/10.1182/blood-2014-05-578328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Pozzi, N., Barranco-Medina, S., Chen, Z., and Di Cera, E. (2012) Exposure of R169 controls protein C activation and autoactivation, Blood, 120, 664-670, https://doi.org/10.1182/blood-2012-03-415323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Mosnier, L. O., Zlokovic, B. V., and Griffin, J. H. (2007) The cytoprotective protein C pathway, Blood, 109, 3161-3172, https://doi.org/10.1182/blood-2006-09-003004.

    Article  CAS  PubMed  Google Scholar 

  119. Nalian, A., and Iakhiaev, A. V. (2008) Possible mechanisms contributing to oxidative inactivation of activated protein C: molecular dynamics study, Thromb. Haemost., 100, 18-25, https://doi.org/10.1160/TH07-12-0750.

    Article  CAS  PubMed  Google Scholar 

  120. Chapin, J. C., and Hajjar, K. A. (2015) Fibrinolysis and the control of blood coagulation, Blood Rev., 29, 17-24, https://doi.org/10.1016/j.blre.2014.09.003.

    Article  CAS  PubMed  Google Scholar 

  121. Mihalko, E., and Brown, A. C. (2020) Clot structure and implications for bleeding and thrombosis, Semin. Thromb. Hemost., 46, 096-104, https://doi.org/10.1055/s-0039-1696944.

    Article  Google Scholar 

  122. Kanno, Y. (2019) The role of fibrinolytic regulators in vascular dysfunction of systemic sclerosis, Int. J. Mol. Sci., 20, 619, https://doi.org/10.3390/ijms20030619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Miles, L. A., Ny, L., Wilczynska, M., Shen, Y., Ny, T., and Parmer, R. J. (2021) Plasminogen receptors and fibrinolysis, Int. J. Mol. Sci., 22, 1712, https://doi.org/10.3390/ijms22041712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gue, Y., and Gorog, D. (2017) Importance of endogenous fibrinolysis in platelet thrombus formation, Int. J. Mol. Sci., 18, 1850, https://doi.org/10.3390/ijms18091850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Line, B. R. (2001) Pathophysiology and diagnosis of deep venous thrombosis, Semin. Nucl. Med., 31, 90-101, https://doi.org/10.1053/snuc.2001.21406.

    Article  CAS  PubMed  Google Scholar 

  126. Baker, S. K., and Strickland, S. (2020) A critical role for plasminogen in inflammation, J. Exp. Med., 217, e20191865, https://doi.org/10.1084/jem.20191865.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Litvinov, R. I., Nabiullina, R. M., Zubairova, L. D., Shakurova, M. A., Andrianova, I. A., and Weisel, J. W. (2019) Lytic susceptibility, structure, and mechanical properties of fibrin in systemic lupus erythematosus, Front. Immunol., 10, 1626, https://doi.org/10.3389/fimmu.2019.01626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kwaan, H. C., and McMahon, B. (2009) The Role of Plasminogen-Plasmin System in Cancer, in Coagulation in Cancer (Kwaan, H. C., and Green, D., eds) Springer US, Boston, MA, pp. 43-66, https://doi.org/10.1007/978-0-387-79962-9_4.

  129. Andreasen, P. A., Egelund, R., and Petersen, H. H. (2000) The plasminogen activation system in tumor growth, invasion, and metastasis, Cell. Mol. Life Sci., 57, 25-40, https://doi.org/10.1007/s000180050497.

    Article  CAS  PubMed  Google Scholar 

  130. Castellino, F., and Ploplis, V. (2005) Structure and function of the plasminogen/plasmin system, Thromb. Haemost., 93, 647-654, https://doi.org/10.1160/TH04-12-0842.

    Article  CAS  PubMed  Google Scholar 

  131. Xue, Y., Bodin, C., and Olsson, K. (2012) Crystal structure of the native plasminogen reveals an activation-resistant compact conformation, J. Thromb. Haemost., 10, 1385-1396, https://doi.org/10.1111/j.1538-7836.2012.04765.x.

    Article  CAS  PubMed  Google Scholar 

  132. Bryk-Wiązania, A. H., Cysewski, D., Ocłoń, E., and Undas, A. (2022) Mass-spectrometric identification of oxidative modifications in plasma-purified plasminogen: association with hypofibrinolysis in patients with acute pulmonary embolism, Biochem. Biophys. Res. Commun., 621, 53-58, https://doi.org/10.1016/j.bbrc.2022.06.063.

    Article  CAS  PubMed  Google Scholar 

  133. Markus, G. (1996) Conformational changes in plasminogen, their effect on activation, and the agents that modulate activation rates – a review, Fibrinolysis, 10, 75-85, https://doi.org/10.1016/S0268-9499(96)80082-8.

    Article  CAS  Google Scholar 

  134. Gugliucci, A. (2008) Hypochlorous acid is a potent inactivator of human plasminogen at concentrations secreted by activated granulocytes, Clin. Chem. Lab. Med., 46, 1403-1409, https://doi.org/10.1515/CCLM.2008.272.

    Article  CAS  PubMed  Google Scholar 

  135. Stief, T. W., Richter, A., Maisch, B., and Renz, H. (2009) Monitoring of functional plasminogen in the blood of patients on fibrinolytics, Clin. Appl. Thromb. Hemost., 15, 297-308, https://doi.org/10.1177/1076029607303771.

    Article  CAS  PubMed  Google Scholar 

  136. Law, R. H. P., Caradoc-Davies, T., Cowieson, N., Horvath, A. J., Quek, A. J., Encarnacao, J. A., Steer, D., Cowan, A., Zhang, Q., Lu, B. G. C., Pike, R. N., Smith, A. I., Coughlin, P. B., and Whisstock, J. C. (2012) The X-ray crystal structure of full-length human plasminogen, Cell Rep., 1, 185-190, https://doi.org/10.1016/j.celrep.2012.02.012.

    Article  CAS  PubMed  Google Scholar 

  137. Seillier, C., Hélie, P., Petit, G., Vivien, D., Clemente, D., Le Mauff, B., Docagne, F., and Toutirais, O. (2022) Roles of the tissue-type plasminogen activator in immune response, Cell. Immunol., 371, 104451, https://doi.org/10.1016/j.cellimm.2021.104451.

    Article  CAS  PubMed  Google Scholar 

  138. Lupu, F., Heim, D. A., Bachmann, F., Hurni, M., Kakkar, V. V., and Kruithof, E. K. (1995) Plasminogen activator expression in human atherosclerotic lesions, Arterioscler. Thromb. Vasc. Biol., 15, 1444-1455, https://doi.org/10.1161/01.ATV.15.9.1444.

    Article  CAS  PubMed  Google Scholar 

  139. Ismail, A. A., Shaker, B. T., and Bajou, K. (2021) The plasminogen-activator plasmin system in physiological and pathophysiological angiogenesis, Int. J. Mol. Sci., 23, 337, https://doi.org/10.3390/ijms23010337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Gonias, S. L. (2021) Plasminogen activator receptor assemblies in cell signaling, innate immunity, and inflammation, Am. J. Physiol. Cell Physiol., 321, C721-C734, https://doi.org/10.1152/ajpcell.00269.2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Hoylaerts, M., Rijken, D. C., Lijnen, H. R., and Collen, D. (1982) Kinetics of the activation of plasminogen by human tissue plasminogen activator. Role of fibrin, J. Biol. Chem., 257, 2912-2919, https://doi.org/10.1016/S0021-9258(19)81051-7.

    Article  CAS  PubMed  Google Scholar 

  142. Rathore, Y. S., Rehan, M., Pandey, K., Sahni, G., and Ashish (2012) First structural model of full-length human tissue-plasminogen activator: a SAXS data-based modeling study, J. Phys. Chem. B, 116, 496-502, https://doi.org/10.1021/jp207243n.

    Article  CAS  PubMed  Google Scholar 

  143. Kuiper, J., Van’T Hof, A., Otter, M., Biessen, E. A. L., Rijken, D. C., and van Berkel, T. J. C. (1996) Interaction of mutants of tissue-type plasminogen activator with liver cells: effect of domain deletions, Biochem. J., 313, 775-780, https://doi.org/10.1042/bj3130775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kim, K. S., Hong, Y.-K., Lee, Y., Shin, J.-Y., Chang, S.-I., Chung, S. I., and Joe, Y. A. (2003) Differential inhibition of endothelial cell proliferation and migration by urokinase subdomains: amino-terminal fragment and kringle domain, Exp. Mol. Med., 35, 578-585, https://doi.org/10.1038/emm.2003.76.

    Article  CAS  PubMed  Google Scholar 

  145. Pennica, D., Holmes, W. E., Kohr, W. J., Harkins, R. N., Vehar, G. A., Ward, C. A., Bennett, W. F., Yelverton, E., Seeburg, P. H., Heyneker, H. L., Goeddel, D. V., and Collen, D. (1983) Cloning and expression of human tissue-type plasminogen activator CDNA in E. coli, Nature, 301, 214-221, https://doi.org/10.1038/301214a0.

    Article  CAS  PubMed  ADS  Google Scholar 

  146. Keck, R. G. (1996) The use of T-butyl hydroperoxide as a probe for methionine oxidation in proteins, Anal. Biochem., 236, 56-62, https://doi.org/10.1006/abio.1996.0131.

    Article  CAS  PubMed  Google Scholar 

  147. Wu, S.-L., Jiang, H., Hancock, W. S., and Karger, B. L. (2010) Identification of the unpaired cysteine status and complete mapping of the 17 disulfides of recombinant tissue plasminogen activator using LC−MS with electron transfer dissociation/collision induced dissociation, Anal. Chem., 82, 5296-5303, https://doi.org/10.1021/ac100766r.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Oszajca, K., Bieniasz, M., Brown, G., Swiatkowska, M., Bartkowiak, J., and Szemraj, J. (2008) Effect of oxidative stress on the expression of T-PA, u-PA, u-PAR, and PAI-1 in endothelial cells, Biochem. Cell Biol., 86, 477-486, https://doi.org/10.1139/O08-137.

    Article  CAS  PubMed  Google Scholar 

  149. Feng, Y.-H., and Hart, G. (1995) In vitro oxidative damage to tissue-type plasminogen activator: a selective modification of the biological functions, Cardiovasc. Res., 30, 255-261, https://doi.org/10.1016/S0008-6363(95)00034-8.

    Article  CAS  PubMed  Google Scholar 

  150. Stief, T. W., Aab, A., and Heimburger, N. (1988) Oxidative inactivation of purified human alpha-2-antiplasmin, antithrombin III, and C1-inhibitor, Thromb. Res., 49, 581-589, https://doi.org/10.1016/0049-3848(88)90255-1.

    Article  CAS  PubMed  Google Scholar 

  151. Nielsen, V. G., Crow, J. P., Zhou, F., and Parks, D. A. (2004) Peroxynitrite inactivates tissue plasminogen activator, Anesthesia Analgesia, 98, 1312-1317, https://doi.org/10.1213/01.ANE.0000111105.38836.F6.

    Article  CAS  PubMed  Google Scholar 

  152. Alvarez, B., and Radi, R. (2003) Peroxynitrite reactivity with amino acids and proteins, Amino Acids, 25, 295-311, https://doi.org/10.1007/s00726-003-0018-8.

    Article  CAS  PubMed  Google Scholar 

  153. Chapman, H. A. (1997) Plasminogen activators, integrins, and the coordinated regulation of cell adhesion and migration, Curr. Opin. Cell Biol., 9, 714-724, https://doi.org/10.1016/S0955-0674(97)80126-3.

    Article  CAS  PubMed  Google Scholar 

  154. Collen, D. (1999) The plasminogen (fibrinolytic) system, Thromb. Haemost., 82, 259-270, https://doi.org/10.1055/s-0037-1615841.

    Article  CAS  PubMed  Google Scholar 

  155. Cale, J., and Lawrence, D. (2007) Structure-function relationships of plasminogen activator inhibitor-1 and its potential as a therapeutic agent, Curr. Drug Targets, 8, 971-981, https://doi.org/10.2174/138945007781662337.

    Article  CAS  PubMed  Google Scholar 

  156. Sillen, M., and Declerck, P. J. (2020) Targeting PAI-1 in cardiovascular disease: structural insights into PAI-1 functionality and inhibition, Front. Cardiovasc. Med., 7, 622473, https://doi.org/10.3389/fcvm.2020.622473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Yamamoto, K., and Saito, H. (1998) A pathological role of increased expression of plasminogen activator inhibitor-1 in human or animal disorders, Int. J. Hematol., 68, 371, https://doi.org/10.1016/S0925-5710(98)00094-2.

    Article  CAS  PubMed  Google Scholar 

  158. Cheng, J. J., Chao, Y. J., Wung, B. S., and Wang, D. L. (1996) Cyclic strain-induced plasminogen activator inhibitor-1 (PAI-1) release from endothelial cells involves reactive oxygen species, Biochem. Biophys. Res. Commun., 225, 100-105, https://doi.org/10.1006/bbrc.1996.1136.

    Article  CAS  PubMed  Google Scholar 

  159. Swiatkowska, M., Szemraj, J., Al-Nedawi, K. N. I., and Pawłowska, Z. (2002) Reactive oxygen species upregulate expression of PAI-1 in endothelial cells, Cell. Mol. Biol. Lett., 7, 1065-1071.

    CAS  PubMed  Google Scholar 

  160. Banfi, C., Camera, M., Giandomenico, G., Toschi, V., Arpaia, M., Mussoni, L., Tremoli, E., and Colli, S. (2003) Vascular thrombogenicity induced by progressive LDL oxidation: protection by antioxidants, Thromb. Haemost., 89, 544-553, https://doi.org/10.1055/s-0037-1613386.

    Article  CAS  PubMed  Google Scholar 

  161. Shatos, M. A., Doherty, J. M., Orfeo, T., Hoak, J. C., Collen, D., and Stump, D. C. (1992) Modulation of the fibrinolytic response of cultured human vascular endothelium by extracellularly generated oxygen radicals, J. Biol. Chem., 267, 597-601, https://doi.org/10.1016/S0021-9258(18)48536-5.

    Article  CAS  PubMed  Google Scholar 

  162. Dimova, E. Y., Samoylenko, A., and Kietzmann, T. (2004) Oxidative stress and hypoxia: implications for plasminogen activator inhibitor-1 expression, Antioxid. Redox Signal., 6, 777-791, https://doi.org/10.1089/1523086041361596.

    Article  CAS  PubMed  Google Scholar 

  163. Lee, C., and Huang, T.-S. (2005) Plasminogen activator inhibitor-1: the expression, biological functions, and effects on tumorigenesis and tumor Cell adhesion and migration, J. Cancer Mol., 1, 25-36.

    CAS  Google Scholar 

  164. Huber, R., and Carrell, R. W. (1989) Implications of the three-dimensional structure of alpha. 1-Antitrypsin for structure and function of serpins, Biochemistry, 28, 8951-8966, https://doi.org/10.1021/bi00449a001.

    Article  CAS  PubMed  Google Scholar 

  165. Laskowski, M., and Kato, I. (1980) Protein inhibitors of proteinases, Annu. Rev. Biochem., 49, 593-626, https://doi.org/10.1146/annurev.bi.49.070180.003113.

    Article  CAS  PubMed  Google Scholar 

  166. Lawrence, D. A., and Loskutoff, D. J. (1986) Inactivation of plasminogen activator inhibitor by oxidants, Biochemistry, 25, 6351-6355, https://doi.org/10.1021/bi00369a001.

    Article  CAS  PubMed  Google Scholar 

  167. Epstein, F. H., and Weiss, S. J. (1989) Tissue destruction by neutrophils, New Engl. J. Med., 320, 365-376, https://doi.org/10.1056/NEJM198902093200606.

    Article  Google Scholar 

  168. Strandberg, L., Lawrence, D. A., Johansson, L. B., and Ny, T. (1991) The oxidative inactivation of plasminogen activator inhibitor type 1 results from a conformational change in the molecule and does not require the involvement of the P1′ methionine, J. Biol. Chem., 266, 13852-13858, https://doi.org/10.1016/S0021-9258(18)92780-8.

    Article  CAS  PubMed  Google Scholar 

  169. Madison, E. L., Goldsmith, E. J., Gething, M. J., Sambrook, J. F., and Gerard, R. D. (1990) Restoration of serine protease-inhibitor interaction by protein engineering, J. Biol. Chem., 265, 21423-21426, https://doi.org/10.1016/S0021-9258(18)45753-5.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was financially supported by the Ministry of Education and Science of the Russian Federation within the framework of the state assignment of the Institute of Biochemical Physics, Russian Academy of Sciences (project no. 122041300210-2).

Author information

Authors and Affiliations

Authors

Contributions

M.A.R. conceptualization, writing (original draft preparation, supervision, reviewing and editing). L.V.Yu. visualization, writing (original draft preparation). E.S.G. visualization, writing (original draft preparation). A.D.V. writing (original draft preparation, visualization, reviewing and editing).

Corresponding author

Correspondence to Mark A. Rosenfeld.

Ethics declarations

This work does not contain any studies involving human and animal subjects. The authors of this work declare that they have no conflicts of interest.

Additional information

Translated from Uspekhi Biologicheskoi Khimii, 2024, Vol. 64, pp. 29-72.

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosenfeld, M.A., Yurina, L.V., Gavrilina, E.S. et al. Post-Translational Oxidative Modifications of Hemostasis Proteins: Structure, Function, and Regulation. Biochemistry Moscow 89 (Suppl 1), S14–S33 (2024). https://doi.org/10.1134/S0006297924140025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297924140025

Keywords

Navigation