Skip to main content
Log in

Reactive Halogen Species: Role in Living Systems and Current Research Approaches

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Reactive halogen species (RHS) are highly reactive compounds that are normally required for regulation of immune response, inflammatory reactions, enzyme function, etc. At the same time, hyperproduction of highly reactive compounds leads to the development of various socially significant diseases – asthma, pulmonary hypertension, oncological and neurodegenerative diseases, retinopathy, and many others. The main sources of (pseudo)hypohalous acids are enzymes from the family of heme peroxidases – myeloperoxidase, lactoperoxidase, eosinophil peroxidase, and thyroid peroxidase. Main targets of these compounds are proteins and peptides, primarily methionine and cysteine residues. Due to the short lifetime, detection of RHS can be difficult. The most common approach is detection of myeloperoxidase, which is thought to reflect the amount of RHS produced, but these methods are indirect, and the results are often contradictory. The most promising approaches seem to be those that provide direct registration of highly reactive compounds themselves or products of their interaction with components of living cells, such as fluorescent dyes. However, even such methods have a number of limitations and can often be applied mainly for in vitro studies with cell culture. Detection of reactive halogen species in living organisms in real time is a particularly acute issue. The present review is devoted to RHS, their characteristics, chemical properties, peculiarities of interaction with components of living cells, and methods of their detection in living systems. Special attention is paid to the genetically encoded tools, which have been introduced recently and allow avoiding a number of difficulties when working with living systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

EPO:

eosinophil peroxidase

ESIPT:

excited state intramolecular proton transfer

FRET:

Förster resonance energy transfer

GFP:

green fluorescent protein

Hal :

halides

HOSCN:

hypothiocyanous acid

ICT:

intramolecular charge transfer

LDL:

low-density lipoproteins

LPO:

lactoperoxidase

MPO:

myeloperoxidase

PET:

positron emission tomography

PeT:

photo-induced electron transfer

Pxdn:

peroxidasin

RHS:

reactive halogen species

SCN :

thiocyanate ion

TBET:

nonradiative through-bond energy transfer

TPO:

thyroid peroxidase

YFP:

yellow fluorescent protein

References

  1. Schultz, J., and Kaminker, K. (1962) Myeloperoxidase of the leucocyte of normal human blood. I. Content and localization, Arch. Biochem. Biophys., 96, 465-467, https://doi.org/10.1016/0003-9861(62)90321-1.

    Article  CAS  PubMed  Google Scholar 

  2. Deby-Dupont, G., Deby, C., and Lamy, M. (1999) Neutrophil myeloperoxidase revisited: It’s role in health and disease, Intensivmedizin Notfallmedizin, 36, 500-513, https://doi.org/10.1007/s003900050270.

    Article  Google Scholar 

  3. Carlson, M. G., Peterson, C. G., and Venge, P. (1985) Human eosinophil peroxidase: purification and characterization, J. Immunol., 134, 1875-1879, https://doi.org/10.4049/jimmunol.134.3.1875.

    Article  CAS  PubMed  Google Scholar 

  4. Arnhold, J., and Flemmig, J. (2010) Human myeloperoxidase in innate and acquired immunity, Arch. Biochem. Biophys., 500, 92-106, https://doi.org/10.1016/j.abb.2010.04.008.

    Article  CAS  PubMed  Google Scholar 

  5. Rothenberg, M. E., and Hogan, S. P. (2006) The eosinophil, Annu. Rev. Immunol., 24, 147-174, https://doi.org/10.1146/annurev.immunol.24.021605.090720.

    Article  CAS  PubMed  Google Scholar 

  6. Panasenko, O. M., Gorudko, I. V., and Sokolov, A. V. (2013) Hypochlorous acid as a precursor of free radicals in living systems, Biochemistry (Moscow), 78, 1466-1489, https://doi.org/10.1134/S0006297913130075.

    Article  CAS  PubMed  Google Scholar 

  7. Lanza, F. (1998) Clinical manifestation of myeloperoxidase deficiency, J. Mol. Med., 76, 676-681, https://doi.org/10.1007/s001090050267.

    Article  CAS  PubMed  Google Scholar 

  8. Aratani, Y., Koyama, H., Nyui, S. I., Suzuki, K., Kura, F., and Maeda, N. (1999) Severe impairment in early host defense against Candida albicans in mice deficient in myeloperoxidase, Infect. Immun., 67, 1828-1836, https://doi.org/10.1128/IAI.67.4.1828-1836.1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Flemmig, J., Gau, J., Schlorke, D., and Arnhold, J. (2015) Lactoperoxidase as a potential drug target, Expert Opin. Ther. Targets, 20, 447-461, https://doi.org/10.1517/14728222.2016.1112378.

    Article  CAS  PubMed  Google Scholar 

  10. Yamakaze, J., and Lu, Z. (2021) Deletion of the lactoperoxidase gene causes multisystem inflammation and tumors in mice, Sci. Rep., 11, 1-16, https://doi.org/10.1038/s41598-021-91745-8.

    Article  CAS  Google Scholar 

  11. Taurog, A., Dorris, M. L., Doerge, D. R. (1996) Mechanism of simultaneous iodination and coupling catalyzed by thyroid peroxidase, Arch. Biochem. Biophys., 330, 24-32, https://doi.org/10.1006/abbi.1996.0222.

    Article  CAS  PubMed  Google Scholar 

  12. Michot, J. L., Osty, J., and Nunez, J. (1980) Regulatory effects of iodide and thiocyanate on tyrosine oxidation catalyzed by thyroid peroxidase, Eur. J. Biochem., 107, 297-301, https://doi.org/10.1111/j.1432-1033.1980.tb06029.x.

    Article  CAS  PubMed  Google Scholar 

  13. Virion, A., Deme, D., Pommier, J., and Nunez, J. (1980) Opposite effects of thiocyanate on tyrosine iodination and thyroid hormone synthesis, Eur. J. Biochem., 112, 1-7, https://doi.org/10.1111/j.1432-1033.1980.tb04979.x.

    Article  CAS  PubMed  Google Scholar 

  14. Serrano-Nascimento, C., and Nunes, M. T. (2022) Perchlorate, nitrate, and thiocyanate: environmental relevant NIS-inhibitors pollutants and their impact on thyroid function and human health, Front. Endocrinol., 13, 995503, https://doi.org/10.3389/fendo.2022.995503.

    Article  Google Scholar 

  15. Bhave, G., Cummings, C. F., Vanacore, R. M., Kumagai-Cresse, C., Ero-Tolliver, I. A., Rafi, M., et al. (2012) Peroxidasin forms sulfilimine chemical bonds using hypohalous acids in tissue genesis, Nat. Chem. Biol., 8, 784-790, https://doi.org/10.1038/nchembio.1038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Péterfi, Z., and Geiszt, M. (2014) Peroxidasins: novel players in tissue genesis, Trends Biochem. Sci., 39, 305-307, https://doi.org/10.1016/j.tibs.2014.05.005.

    Article  CAS  PubMed  Google Scholar 

  17. Colon, S., Page-Mccaw, P., and Bhave, G. (2017) Role of hypohalous acids in basement membrane homeostasis, Antioxid. Redox Signal., 27, 839, https://doi.org/10.1089/ars.2017.7245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Khan, K., Rudkin, A., Parry, D. A., Burdon, K. P., McKibbin, M., Logan, C. V., et al. (2011) Homozygous mutations in PXDN cause congenital cataract, corneal opacity, and developmental glaucoma, Am. J. Hum. Genet., 89, 464-473, https://doi.org/10.1016/j.ajhg.2011.08.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Medfai, H., Khalil, A., Rousseau, A., Nuyens, V., Paumann-Page, M., Sevcnikar, B., et al. (2019) Human peroxidasin 1 promotes angiogenesis through ERK1/2, Akt, and FAK pathways, Cardiovasc. Res., 115, 463-475, https://doi.org/10.1093/cvr/cvy179.

    Article  CAS  PubMed  Google Scholar 

  20. Paumann-Page, M., Kienzl, N. F., Motwani, J., Bathish, B., Paton, L. N., Magon, N. J., et al. (2021) Peroxidasin protein expression and enzymatic activity in metastatic melanoma cell lines are associated with invasive potential, Redox Biol., 46, 102090, https://doi.org/10.1016/j.redox.2021.102090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zámocký, M., Hofbauer, S., Schaffner, I., Gasselhuber, B., Nicolussi, A., Soudi, M., et al. (2015) Independent evolution of four heme peroxidase superfamilies, Arch. Biochem. Biophys., 574, 108-119, https://doi.org/10.1016/j.abb.2014.12.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Furtmüller, P. G., Zederbauer, M., Jantschko, W., Helm, J., Bogner, M., Jakopitsch, C., et al. (2006) Active site structure and catalytic mechanisms of human peroxidases, Arch. Biochem. Biophys., 445, 199-213, https://doi.org/10.1016/j.abb.2005.09.017.

    Article  CAS  PubMed  Google Scholar 

  23. Arnhold, J., Furtmüller, P. G., and Obinger, C. (2013) Redox properties of myeloperoxidase, Commun. Free Radic. Res., 8, 179-186, https://doi.org/10.1179/135100003225002664.

    Article  CAS  Google Scholar 

  24. Fiedler, T. J., Davey, C. A., and Fenna, R. E. (2000) X-ray crystal structure and characterization of halide-binding sites of human myeloperoxidase at 1.8 Å resolution, J. Biol. Chem., 275, 11964-11971, https://doi.org/10.1074/jbc.275.16.11964.

    Article  CAS  PubMed  Google Scholar 

  25. Furtmüller, P. G., Burner, U., Regelsberger, G., and Obinger, C. (2000) Spectral and kinetic studies on the formation of eosinophil peroxidase compound I and its reaction with halides and thiocyanate, Biochemistry, 39, 15578-15584, https://doi.org/10.1021/bi0020271.

    Article  CAS  PubMed  Google Scholar 

  26. Arnhold, J., Furtmüller, P. G., Regelsberger, G., and Obinger, C. (2001) Redox properties of the couple compound I/native enzyme of myeloperoxidase and eosinophil peroxidase, Eur. J. Biochem., 268, 5142-5148, https://doi.org/10.1046/j.0014-2956.2001.02449.x.

    Article  CAS  PubMed  Google Scholar 

  27. Bolscher, B. G. J. M., Plat, H., and Wever, R. (1984) Some properties of human eosinophil peroxidase, a comparison with other peroxidases, Biochim. Biophys. Acta Protein Struct. Mol. Enzymol., 784, 177-186, https://doi.org/10.1016/0167-4838(84)90125-0.

    Article  CAS  Google Scholar 

  28. Pruitt, K. (2003) Lactoperoxidase, in Advanced Dairy Chemistry – 1 Proteins, pp. 563-570, https://doi.org/10.1007/978-1-4419-8602-3_16.

  29. Kussendrager, K. D., and Van Hooijdonk, A. C. M. (2000) Lactoperoxidase: physico-chemical properties, occurrence, mechanism of action and applications, Br. J. Nutr., 84, 19-25, https://doi.org/10.1017/S0007114500002208.

    Article  Google Scholar 

  30. Singh, A. K., Singh, N., Sharma, S., Singh, S. B., Kaur, P., Bhushan, A., et al. (2008) Crystal structure of lactoperoxidase at 2.4 Å resolution, J. Mol. Biol., 376, 1060-1075, https://doi.org/10.1016/j.jmb.2007.12.012.

    Article  CAS  PubMed  Google Scholar 

  31. Shin, K., Hayasawa, H., Lönnerdal, B. (2001) Purification and quantification of lactoperoxidase in human milk with use of immunoadsorbents with antibodies against recombinant human lactoperoxidase, Am. J. Clin. Nutr., 73, 984-989, https://doi.org/10.1093/ajcn/73.5.984.

    Article  CAS  PubMed  Google Scholar 

  32. Furtmüller, P. G., Arnhold, J., Jantschko, W., Zederbauer, M., Jakopitsch, C., and Obinger, C. (2005) Standard reduction potentials of all couples of the peroxidase cycle of lactoperoxidase, J. Inorg. Biochem., 99, 1220-1229, https://doi.org/10.1016/j.jinorgbio.2005.02.021.

    Article  CAS  PubMed  Google Scholar 

  33. Guo, J., McLachlan, S. M., Hutchison, S., and Rapoport, B. (1998) The Greater glycan content of recombinant human thyroid peroxidase of mammalian than of insect cell origin facilitates purification to homogeneity of enzymatically protein remaining soluble at high concentration, Endocrinology, 139, 999-1005, https://doi.org/10.1210/endo.139.3.5782.

    Article  CAS  PubMed  Google Scholar 

  34. Baker, S., Miguel, R. N., Thomas, D., Powell, M., Furmaniak, J., and Smith, B. R. (2023) Cryo-electron microscopy structures of human thyroid peroxidase (TPO) in complex with TPO antibodies, J. Mol. Endocrinol., 70, 220149, https://doi.org/10.1530/JME-22-0149.

    Article  Google Scholar 

  35. Hendry, E., Taylor, G., Ziemnicka, K., Grennan Jones, F., Furmaniak, J., and Rees Smith, B. (1999) Recombinant human thyroid peroxidase expressed in insect cells is soluble at high concentrations and forms diffracting crystals, J. Endocrinol., 160, R13-R15, https://doi.org/10.1677/joe.0.160r013.

    Article  CAS  PubMed  Google Scholar 

  36. Godlewska, M., Krasuska, W., and Czarnocka, B. (2018) Biochemical properties of thyroid peroxidase (TPO) expressed in human breast and mammary-derived cell lines, PLoS One, 13, e0193624, https://doi.org/10.1371/journal.pone.0193624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nicolussi, A., Auer, M., Sevcnikar, B., Paumann-Page, M., Pfanzagl, V., Zámocký, M., et al. (2018) Posttranslational modification of heme in peroxidases – impact on structure and catalysis, Arch. Biochem. Biophys., 643, 14-23, https://doi.org/10.1016/j.abb.2018.02.008.

    Article  CAS  PubMed  Google Scholar 

  38. Paumann-Page, M., Tscheliessnig, R., Sevcnikar, B., Katz, R. S., Schwartz, I., Hofbauer, S., et al. (2020) Monomeric and homotrimeric solution structures of truncated human peroxidasin 1 variants, Biochim. Biophys. Acta Proteins Proteomics, 1868, 140249, https://doi.org/10.1016/j.bbapap.2019.07.002.

    Article  CAS  PubMed  Google Scholar 

  39. Paumann-Page, M., Katz, R. S., Bellei, M., Schwartz, I., Edenhofer, E., Sevcnikar, B., et al. (2017) Pre-steady-state kinetics reveal the substrate specificity and mechanism of halide oxidation of truncated human peroxidasin 1, J. Biol. Chem., 292, 4583-4592, https://doi.org/10.1074/jbc.M117.775213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Oka, S., Sibazaki, Y., and Tahara, S. (1981) Direct potentiometric determination of chloride ion in whole blood, Anal. Chem., 53, 588-593, https://doi.org/10.1021/ac00227a007.

    Article  CAS  PubMed  Google Scholar 

  41. Olszowy, H. A., Rossiter, J., Hegarty, J., Geoghegan, P., and Haswell-Elkins, M. (1998) Background levels of bromide in human blood, J. Anal. Toxicol., 22, 225-230, https://doi.org/10.1093/jat/22.3.225.

    Article  CAS  PubMed  Google Scholar 

  42. Rendl, J., Luster, M., and Reiners, C. (2006) Serum inorganic iodide determined by paired-ion reversed-phase Hplc with electrochemical detection, Chromatogr. Rel. Technol., 20, 1445-1459, https://doi.org/10.1080/10826079708010987.

    Article  Google Scholar 

  43. Dastur, D. K., Quadros, E. V., Wadia, N. H., Desai, M. M., and Bharucha, E. P. (1972) Effect of vegetarianism and smoking on vitamin b12, thiocyanate, and folate levels in the blood of normal subjects, Br. Med. J., 3, 260, https://doi.org/10.1136/bmj.3.5821.260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rehak, N. N., Cecco, S. A., Niemela, J. E., and Elin, R. J. (1997) Thiocyanate in smokers interferes with the Nova magnesium ion-selective electrode, Clin. Chem., 43, 1595-1600, https://doi.org/10.1093/clinchem/43.9.1595.

    Article  CAS  PubMed  Google Scholar 

  45. Arnhold, J. (2021) Heme peroxidases at unperturbed and inflamed mucous surfaces, Antioxidants, 10, 1805, https://doi.org/10.3390/antiox10111805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Van Dalen, C. J., Whitehouse, M. W., Winterbourn, C. C., and Kettle, A. J. (1997) Thiocyanate and chloride as competing substrates for myeloperoxidase, Biochem. J., 327, 487-492, https://doi.org/10.1042/bj3270487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Henderson, J. P., Byun, J., Williams, M. V., Mueller, D. M., McCormick, M. L., and Heinecke, J. W. (2001) Production of brominating intermediates by myeloperoxidase, J. Biol. Chem., 276, 7867-7875, https://doi.org/10.1074/jbc.M005379200.

    Article  CAS  PubMed  Google Scholar 

  48. Schlorke, D., Flemmig, J., Birkemeyer, C., and Arnhold, J. (2016) Formation of cyanogen iodide by lactoperoxidase, J. Inorg. Biochem., 154, 35-41, https://doi.org/10.1016/j.jinorgbio.2015.11.005.

    Article  CAS  PubMed  Google Scholar 

  49. Schlorke, D., Atosuo, J., Flemmig, J., Lilius, E. M., and Arnhold, J. (2016) Impact of cyanogen iodide in killing of Escherichia coli by the lactoperoxidase-hydrogen peroxide-(pseudo)halide system, Free Radic. Res., 50, 1287-1295, https://doi.org/10.1080/10715762.2016.1235789.

    Article  CAS  PubMed  Google Scholar 

  50. Ghibaudi, E., Laurenti, E., Pacchiardo, C., Suriano, G., Moguilevsky, N., and Ferrari, R. P. (2003) Organic and inorganic substrates as probes for comparing native bovine lactoperoxidase and recombinant human myeloperoxidase, J. Inorg. Biochem., 94, 146-154, https://doi.org/10.1016/S0162-0134(02)00594-9.

    Article  CAS  PubMed  Google Scholar 

  51. Ghibaudi, E., and Laurenti, E. (2003) Unraveling the catalytic mechanism of lactoperoxidase and myeloperoxidase, Eur. J. Biochem., 270, 4403-4412, https://doi.org/10.1046/j.1432-1033.2003.03849.x.

    Article  CAS  PubMed  Google Scholar 

  52. Dempsey, B., Cruz, L. C., Mineiro, M. F., da Silva, R. P., and Meotti, F. C. (2022) Uric acid reacts with peroxidasin, decreases collagen IV crosslink, and impairs human endothelial cell migration and adhesion, Antioxidants, 11, 1117, https://doi.org/10.3390/antiox11061117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kettle, A. J., Maroz, A., Woodroffe, G., Winterbourn, C. C., and Anderson, R. F. (2011) Spectral and kinetic evidence for reaction of superoxide with compound I of myeloperoxidase, Free Radic. Biol. Med., 51, 2190-2194, https://doi.org/10.1016/j.freeradbiomed.2011.09.019.

    Article  CAS  PubMed  Google Scholar 

  54. Winterbourn, C. C., Hampton, M. B., Livesey, J. H., and Kettle, A. J. (2006) Modeling the reactions of superoxide and myeloperoxidase in the neutrophil phagosome: implications for microbial killing, J. Biol. Chem., 281, 39860-39869, https://doi.org/10.1074/jbc.M605898200.

    Article  CAS  PubMed  Google Scholar 

  55. Vlasova, I. I., Sokolov, A. V., and Arnhold, J. (2012) The free amino acid tyrosine enhances the chlorinating activity of human myeloperoxidase, J. Inorg. Biochem., 106, 76-83, https://doi.org/10.1016/j.jinorgbio.2011.09.018.

    Article  CAS  PubMed  Google Scholar 

  56. Candeias, L. P., Stratford, M. R. L., and Wardman, P. (1994) Formation of hydroxyl radicals on reaction of hypochlorous acid with ferrocyanide, a model IRON(II) complex, Free Radic. Res., 20, 241-249, https://doi.org/10.3109/10715769409147520.

    Article  CAS  PubMed  Google Scholar 

  57. Fenton, H. J. H. (1894) LXXIII. Oxidation of tartaric acid in presence of iron, J. Chem. Soc. Trans., 65, 899-910, https://doi.org/10.1039/CT8946500899.

    Article  CAS  Google Scholar 

  58. Lu, C., Deng, K., Hu, C., and Lyu, L. (2020) Dual-reaction-center catalytic process continues Fenton’s story, Front. Environ. Sci. Engin., 14, 1-9, https://doi.org/10.1007/s11783-020-1261-x.

    Article  CAS  Google Scholar 

  59. Abe, C., Miyazawa, T., and Miyazawa, T. (2022) Current use of Fenton reaction in drugs and food, Molecules, 27, 5451, https://doi.org/10.3390/molecules27175451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Marquezs, L. A., and Dunford, H. B. (1994) Chlorination of taurine by myeloperoxidase. Kinetic evidence for an enzyme-bound intermediate, J. Biol. Chem., 269, 7950-7956, https://doi.org/10.1016/S0021-9258(17)37143-0.

    Article  Google Scholar 

  61. Ramos, D. R., Victoria García, M., Canle L., M., Arturo Santaballa, J., Furtmüller, P. G., and Obinger, C. (2007) Myeloperoxidase-catalyzed taurine chlorination: Initial versus equilibrium rate, Arch. Biochem. Biophys., 466, 221-233, https://doi.org/10.1016/j.abb.2007.07.024.

    Article  CAS  PubMed  Google Scholar 

  62. Vakhrusheva, T. V., Sokolov, A. V., Moroz, G. D., Kostevich, V. A., Gorbunov, N. P., Smirnov, I. P., et al. (2022) Effects of synthetic short cationic antimicrobial peptides on the catalytic activity of myeloperoxidase, reducing its oxidative capacity, Antioxidants, 11, 2419, https://doi.org/10.3390/antiox11122419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sokolov, A. V., Kostevich, V. A., Zakharova, E. T., Samygina, V. R., Panasenko, O. M., and Vasilyev, V. B. (2015) Interaction of ceruloplasmin with eosinophil peroxidase as compared to its interplay with myeloperoxidase: reciprocal effect on enzymatic properties, Free Radic. Res., 49, 800-811, https://doi.org/10.3109/10715762.2015.1005615.

    Article  CAS  PubMed  Google Scholar 

  64. Samygina, V. R., Sokolov, A. V., Bourenkov, G., Petoukhov, M. V., Pulina, M. O., Zakharova, E. T., et al. (2013) Ceruloplasmin: macromolecular assemblies with iron-containing acute phase proteins, PLoS One, 8, e67145, https://doi.org/10.1371/journal.pone.0067145.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  65. Sokolov, A. V., Acquasaliente, L., Kostevich, V. A., Frasson, R., Zakharova, E. T., Pontarollo, G., et al. (2015) Thrombin inhibits the anti-myeloperoxidase and ferroxidase functions of ceruloplasmin: relevance in rheumatoid arthritis, Free Radic. Biol. Med., 86, 279-294, https://doi.org/10.1016/j.freeradbiomed.2015.05.016.

    Article  CAS  PubMed  Google Scholar 

  66. Zabrodskaya, Y. A., Egorov, V. V., Sokolov, A. V., Shvetsov, A. V., Gorshkova, Y. E., Ivankov, O. I., et al. (2022) Caught red handed: modeling and confirmation of the myeloperoxidase ceruloplasmin alpha-thrombin complex, BioMetals, 35, 1157-1168, https://doi.org/10.1007/s10534-022-00432-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sokolov, A. V., Kostevich, V. A., Kozlov, S. O., Donskyi, I. S., Vlasova, I. I., Rudenko, A. O., et al. (2015) Kinetic method for assaying the halogenating activity of myeloperoxidase based on reaction of celestine blue B with taurine halogenamines, Free Radic. Res., 49, 777-789, https://doi.org/10.3109/10715762.2015.1017478.

    Article  CAS  PubMed  Google Scholar 

  68. Sokolov, A. V., Zakahrova, E. T., Kostevich, V. A., Samygina, V. R., and Vasilyev, V. B. (2014) Lactoferrin, myeloperoxidase, and ceruloplasmin: complementary gearwheels cranking physiological and pathological processes, BioMetals, 27, 815-828, https://doi.org/10.1007/s10534-014-9755-2.

    Article  CAS  PubMed  Google Scholar 

  69. Sokolov, A. V., Kostevich, V. A., Runova, O. L., Gorudko, I. V., Vasilyev, V. B., Cherenkevich, S. N., et al. (2014) Proatherogenic modification of LDL by surface-bound myeloperoxidase, Chem. Phys. Lipids, 180, 72-80, https://doi.org/10.1016/j.chemphyslip.2014.02.006.

    Article  CAS  PubMed  Google Scholar 

  70. Panasenko, O. M., Torkhovskaya, T. I., Gorudko, I. V., and Sokolov, A. V. (2020) The role of halogenative stress in atherogenic modification of low-density lipoproteins, Biochemistry (Moscow), 85, 34-55, https://doi.org/10.1134/S0006297920140035.

    Article  CAS  Google Scholar 

  71. Vlasova, I. I., Sokolov, A. V., Kostevich, V. A., Mikhalchik, E. V., and Vasilyev, V. B. (2019) Myeloperoxidase-induced oxidation of albumin and ceruloplasmin: role of tyrosines, Biochemistry (Moscow), 84, 652-662, https://doi.org/10.1134/S0006297919060087.

    Article  CAS  PubMed  Google Scholar 

  72. Kostevich, V. A., and Sokolov, A. V. (2018) Oxidation of cysteine by ceruloplasmin leads to formation of hydrogen peroxide, which can be utilized by myeloperoxidase, Biochem. Biophys. Res. Commun., 503, 2146-2151, https://doi.org/10.1016/j.bbrc.2018.08.003.

    Article  CAS  PubMed  Google Scholar 

  73. Gorudko, I. V., Grigorieva, D. V., Shamova, E. V., Kostevich, V. A., Sokolov, A. V., Mikhalchik, E. V., et al. (2014) Hypohalous acid-modified human serum albumin induces neutrophil NADPH oxidase activation, degranulation, and shape change, Free Radic. Biol. Med., 68, 326-334, https://doi.org/10.1016/j.freeradbiomed.2013.12.023.

    Article  CAS  PubMed  Google Scholar 

  74. Panasenko, O. M., Ivanov, V. A., Mikhalchik, E. V., Gorudko, I. V., Grigorieva, D. V., Basyreva, L. Y., et al. (2022) Methylglyoxal-modified human serum albumin binds to leukocyte myeloperoxidase and inhibits its enzymatic activity, Antioxidants, 11, 2263, https://doi.org/10.3390/antiox11112263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Reut, V. E., Kozlov, S. O., Kudryavtsev, I. V., Grudinina, N. A., Kostevich, V. A., Gorbunov, N. P., et al. (2022) New application of the commercially available dye celestine blue B as a sensitive and selective fluorescent “turn-on” probe for endogenous detection of HOCl and reactive halogenated species, Antioxidants, 11, 1719, https://doi.org/10.3390/antiox11091719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dypbukt, J. M., Bishop, C., Brooks, W. M., Thong, B., Eriksson, H., and Kettle, A. J. (2005) A sensitive and selective assay for chloramine production by myeloperoxidase, Free Radic. Biol. Med., 39, 1468-1477, https://doi.org/10.1016/j.freeradbiomed.2005.07.008.

    Article  CAS  PubMed  Google Scholar 

  77. Senthilmohan, R., Kettle, A. J. (2006) Bromination and chlorination reactions of myeloperoxidase at physiological concentrations of bromide and chloride, Arch. Biochem. Biophys., 445, 235-244, https://doi.org/10.1016/j.abb.2005.07.005.

    Article  CAS  PubMed  Google Scholar 

  78. Setsukinai, K., Urano, Y., Kakinuma, K., Majima, H. J., and Nagano, T. (2003) Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species, J. Biol. Chem., 278, 3170-3175, https://doi.org/10.1074/jbc.M209264200.

    Article  PubMed  Google Scholar 

  79. Seltz, W. R. (1975) Chemiluminescence from the reaction between hypochlorite and luminol, J. Phys. Chem., 79, 101-106, https://doi.org/10.1021/j100569a002.

    Article  Google Scholar 

  80. Gross, S., Gammon, S. T., Moss, B. L., Rauch, D., Harding, J., Heinecke, J. W., et al. (2009) Bioluminescence imaging of myeloperoxidase activity in vivo, Nat. Med., 15, 455-461, https://doi.org/10.1038/nm.1886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bedouhène, S., Moulti-Mati, F., Hurtado-Nedelec, M., Dang, P. M.-C., El-Benna, J. (2017) Luminol-amplified chemiluminescence detects mainly superoxide anion produced by human neutrophils, Am. J. Blood Res., 7, 41-48.

    PubMed  PubMed Central  Google Scholar 

  82. Goiffon, R. J., Martinez, S. C., and Piwnica-Worms, D. (2015) A rapid bioluminescence assay for measuring myeloperoxidase activity in human plasma, Nat. Commun., 6, 6271, https://doi.org/10.1038/ncomms7271.

    Article  CAS  PubMed  ADS  Google Scholar 

  83. Song, X., Shen, H., Yin, X., Wang, X., and Liu, J. (2013) Microflow-injection chemiluminescence of luminol and hypochlorite enhanced by phloxine B, Luminescence, 28, 16-22, https://doi.org/10.1002/bio.1388.

    Article  CAS  PubMed  Google Scholar 

  84. Ordeig, O., Mas, R., Gonzalo, J., Del Campo, F. J., Muñoz, F. J., and De Haro, C. (2005) Continuous detection of hypochlorous acid/hypochlorite for water quality monitoring and control, Electroanalysis, 17, 1641-1648, https://doi.org/10.1002/elan.200403194.

    Article  CAS  Google Scholar 

  85. Kumaravel, S., Balamurugan, T. S. T., Jia, S. H., Lin, H. Y., and Huang, S. T. (2020) Ratiometric electrochemical molecular switch for sensing hypochlorous acid: applicable in food analysis and real-time in-situ monitoring, Anal. Chim. Acta, 1106, 168-175, https://doi.org/10.1016/j.aca.2020.01.065.

    Article  CAS  PubMed  Google Scholar 

  86. Chapman, A. L. P., Mocatta, T. J., Shiva, S., Seidel, A., Chen, B., Khalilova, I., et al. (2013) Ceruloplasmin is an endogenous inhibitor of myeloperoxidase, J. Biol. Chem., 288, 6465-6477, https://doi.org/10.1074/jbc.M112.418970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hawkins, C. L., and Davies, M. J. (2021) Role of myeloperoxidase and oxidant formation in the extracellular environment in inflammation-induced tissue damage, Free Radic. Biol. Med., 172, 633-651, https://doi.org/10.1016/j.freeradbiomed.2021.07.007.

    Article  CAS  PubMed  Google Scholar 

  88. Hazen, S. L., and Heinecke, J. W. (1997) 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima, J. Clin. Invest., 99, 2075-2081, https://doi.org/10.1172/JCI119379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gaut, J. P., Byun, J., Tran, H. D., and Heinecke, J. W. (2002) Artifact-free quantification of Free 3-chlorotyrosine, 3-bromotyrosine, and 3-nitrotyrosine in human plasma by electron capture-negative chemical ionization gas chromatography mass spectrometry and liquid chromatography-electrospray ionization tandem mass spectrometry, Anal. Biochem., 300, 252-259, https://doi.org/10.1006/abio.2001.5469.

    Article  CAS  PubMed  Google Scholar 

  90. Pattison, D. I., and Davies, M. J. (2001) Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds, Chem. Res. Toxicol., 14, 1453-1464, https://doi.org/10.1021/tx0155451.

    Article  CAS  PubMed  Google Scholar 

  91. Mani, A. R., Ippolito, S., Moreno, J. C., Visser, T. J., and Moore, K. P. (2007) The metabolism and dechlorination of chlorotyrosine in vivo, J. Biol. Chem., 282, 29114-29121, https://doi.org/10.1074/jbc.M704270200.

    Article  CAS  PubMed  Google Scholar 

  92. Curtis, M. P., Hicks, A. J., and Neidigh, J. W. (2011) Kinetics of 3-chlorotyrosine formation and loss due to hypochlorous acid and chloramines, Chem. Res. Toxicol., 24, 418-428, https://doi.org/10.1021/tx100380d.

    Article  CAS  PubMed  Google Scholar 

  93. Maghzal, G. J., Cergol, K. M., Shengule, S. R., Suarna, C., Newington, D., Kettle, A. J., et al. (2014) Assessment of myeloperoxidase activity by the conversion of hydroethidine to 2-chloroethidium, J. Biol. Chem., 289, 5580-5595, https://doi.org/10.1074/jbc.M113.539486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Talib, J., Maghzal, G. J., Cheng, D., and Stocker, R. (2016) Detailed protocol to assess in vivo and ex vivo myeloperoxidase activity in mouse models of vascular inflammation and disease using hydroethidine, Free Radic. Biol. Med., 97, 124-135, https://doi.org/10.1016/j.freeradbiomed.2016.05.004.

    Article  CAS  PubMed  Google Scholar 

  95. Albert, C. J., Crowley, J. R., Hsu, F. F., Thukkani, A. K., and Ford, D. A. (2001) Reactive chlorinating species produced by myeloperoxidase target the vinyl ether bond of plasmalogens: identification of 2-chlorohexadecanal, J. Biol. Chem., 276, 23733-23741, https://doi.org/10.1074/jbc.M101447200.

    Article  CAS  PubMed  Google Scholar 

  96. Skaff, O., Pattison, D. I., and Davies, M. J. (2008) The vinyl ether linkages of plasmalogens are favored targets for myeloperoxidase-derived oxidants: a kinetic study, Biochemistry, 47, 8237-8245, https://doi.org/10.1021/bi800786q.

    Article  CAS  PubMed  Google Scholar 

  97. Palladino, E. N. D., Hartman, C. L., Albert, C. J., and Ford, D. A. (2018) The chlorinated lipidome originating from myeloperoxidase-derived HOCl targeting plasmalogens: metabolism, clearance, and biological properties, Arch. Biochem. Biophys., 641, 31-38, https://doi.org/10.1016/j.abb.2018.01.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hazell, L. J., Arnold, L., Flowers, D., Waeg, G., Malle, E., and Stocker, R. (1996) Presence of hypochlorite-modified proteins in human atherosclerotic lesions, J. Clin. Invest., 97, 1535-1544, https://doi.org/10.1172/JCI118576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Malle, E., Hazell, L., Stocker, R., Sattler, W., Esterbauer, H., and Waeg, G. (1995) Immunologic detection and measurement of hypochlorite-modified LDL with specific monoclonal antibodies, Arterioscler. Thromb. Vasc. Biol., 15, 982-989, https://doi.org/10.1161/01.ATV.15.7.982.

    Article  CAS  PubMed  Google Scholar 

  100. Hammer, A., Desoye, G., Dohr, G., Sattler, W., and Malle, E. (2001) Myeloperoxidase-dependent generation of hypochlorite-modified proteins in human placental tissues during normal pregnancy, Lab. Invest., 81, 543-554, https://doi.org/10.1038/labinvest.3780263.

    Article  CAS  PubMed  Google Scholar 

  101. Cai, H., Chuang, C. Y., Hawkins, C. L., and Davies, M. J. (2020) Binding of myeloperoxidase to the extracellular matrix of smooth muscle cells and subsequent matrix modification, Sci. Rep., 10, 666, https://doi.org/10.1038/s41598-019-57299-6.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  102. Reynolds, W. F., Malle, E., and Maki, R. A. (2022) Thiocyanate reduces motor impairment in the hMPO-A53T PD mouse model while reducing MPO-oxidation of alpha synuclein in enlarged LYVE1/AQP4 positive periventricular glymphatic vessels, Antioxidants, 11, 2342, https://doi.org/10.3390/antiox11122342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lokeshwaran, K., and Venkataraman, K. (2016) Development of monoclonal antibody against chlorinated 192tyrosine containing ApoAI peptide to screen quality of human high density lipoprotein (HDL), Protein Peptide Lett., 23, 905-912, https://doi.org/10.2174/0929866523666160728121204.

    Article  CAS  Google Scholar 

  104. Lokeshwaran, K., Hemadou, A., Jayaprakash, N. S., Prasanna, R. R., Jacobin-Valat, M. J., Dieryck, W., et al. (2019) Development of anti-chloro 192 tyrosine HDL apoA-I antibodies for the immunodiagnosis of cardiovascular diseases, J. Immunol. Methods, 474, 112637, https://doi.org/10.1016/j.jim.2019.112637.

    Article  CAS  PubMed  Google Scholar 

  105. Wu, W., Chen, Y., D’Avignon, A., and Hazen, S. L. (1999) 3-bromotyrosine and 3,5-dibromotyrosine are major products of protein oxidation by eosinophil peroxidase: potential markers for eosinophil-dependent tissue injury in vivo, Biochemistry, 38, 3538-3548, https://doi.org/10.1021/bi982401l.

    Article  CAS  PubMed  Google Scholar 

  106. Van Dalen, C. J., Aldridge, R. E., Chan, T., Senthilmohan, R., Hancox, R. J., Cowan, J. O., et al. (2009) Bromotyrosines in sputum proteins and treatment effects of terbutaline and budesonide in asthma, Ann. Allergy Asthma Immunol., 103, 348-353, https://doi.org/10.1016/S1081-1206(10)60536-4.

    Article  CAS  PubMed  Google Scholar 

  107. Kato, Y., Kawai, Y., Morinaga, H., Kondo, H., Dozaki, N., Kitamoto, N., et al. (2005) Immunogenicity of a brominated protein and successive establishment of a monoclonal antibody to dihalogenated tyrosine, Free Radic. Biol. Med., 38, 24-31, https://doi.org/10.1016/j.freeradbiomed.2004.09.013.

    Article  CAS  PubMed  Google Scholar 

  108. Kambayashi, Y., Ogino, K., Takemoto, K., Imagama, T., Takigawa, T., Kimura, S., et al. (2009) Preparation and characterization of a polyclonal antibody against brominated protein, J. Clin. Biochem. Nutr., 44, 95-103, https://doi.org/10.3164/jcbn.08-196.

    Article  CAS  PubMed  Google Scholar 

  109. Jin, H., Hallstrand, T. S., Daly, D. S., Matzke, M. M., Nair, P., Bigelow, D. J., et al. (2014) A halotyrosine antibody that detects increased protein modifications in asthma patients, J. Immunol. Methods, 403, 17-25, https://doi.org/10.1016/j.jim.2013.11.013.

    Article  CAS  PubMed  Google Scholar 

  110. Chen, J. W., Pham, W., Weissleder, R., and Bogdanov, A. (2004) Human myeloperoxidase: a potential target for molecular MR imaging in atherosclerosis, Magnetic Reson. Med., 52, 1021-1028, https://doi.org/10.1002/mrm.20270.

    Article  CAS  Google Scholar 

  111. Rodríguez, E., Nilges, M., Weissleder, R., and Chen, J. W. (2010) Activatable magnetic resonance imaging agents for myeloperoxidase sensing: mechanism of activation, stability, and toxicity, J. Am. Chem. Soc., 132, 168-177, https://doi.org/10.1021/ja905274f.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Nahrendorf, M., Sosnovik, D., Chen, J. W., Panizzi, P., Figueiredo, J. L., Aikawa, E., et al. (2008) Activatable magnetic resonance imaging agent reports myeloperoxidase activity in healing infarcts and noninvasively detects the antiinflammatory effects of atorvastatin on ischemia-reperfusion injury, Circulation, 117, 1153-1160, https://doi.org/10.1161/CIRCULATIONAHA.107.756510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rodríguez-Rodríguez, A., Shuvaev, S., Rotile, N., Jones, C. M., Probst, C. K., Dos Santos Ferreira, D., et al. (2019) Peroxidase sensitive amplifiable probe for molecular magnetic resonance imaging of pulmonary inflammation, ACS Sensors, 4, 2412-2419, https://doi.org/10.1021/acssensors.9b01010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wang, C., Cheng, D., Jalali Motlagh, N., Kuellenberg, E. G., Wojtkiewicz, G. R., Schmidt, S. P., et al. (2021) Highly efficient activatable MRI probe to sense myeloperoxidase activity, J. Med. Chem., 64, 5874-5885, https://doi.org/10.1021/acs.jmedchem.1c00038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wang, C., Keliher, E., Zeller, M. W. G., Wojtkiewicz, G. R., Aguirre, A. D., Buckbinder, L., et al. (2019) An activatable PET imaging radioprobe is a dynamic reporter of myeloperoxidase activity in vivo, Proc. Natl. Acad. Sci. USA, 116, 11966-11971, https://doi.org/10.1073/pnas.1818434116.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  116. Zeller, M. W. G., Wang, C., Keliher, E. J., Wojtkiewicz, G. R., Aguirre, A., Maresca, K., et al. (2023) Myeloperoxidase PET imaging tracks intracellular and extracellular treatment changes in experimental myocardial infarction, Int. J. Mol. Sci., 24, 5704, https://doi.org/10.3390/ijms24065704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ximenes, V. F., Maghzal, G. J., Turner, R., Kato, Y., Winterbourn, C. C., and Kettle, A. J. (2010) Serotonin as a physiological substrate for myeloperoxidase and its superoxide-dependent oxidation to cytotoxic tryptamine-4,5-dione, Biochem. J., 425, 285-293, https://doi.org/10.1042/BJ20090776.

    Article  CAS  Google Scholar 

  118. Liu, Z., Li, G., Wang, Y., Li, J., Mi, Y., Guo, L., et al. (2018) A novel fluorescent probe for imaging the process of HOCl oxidation and Cys/Hcy reduction in living cells, RSC Adv., 8, 9519-9523, https://doi.org/10.1039/C7RA13419C.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  119. Wei, P., Yuan, W., Xue, F., Zhou, W., Li, R., Zhang, D., et al. (2018) Deformylation reaction-based probe for: in vivo imaging of HOCl, Chem. Sci., 9, 495-501, https://doi.org/10.1039/C7SC03784H.

    Article  CAS  PubMed  ADS  Google Scholar 

  120. Bao, X., Cao, X., Yuan, Y., Zhou, B., and Huo, C. (2021) A water-soluble, highly sensitive and ultrafast fluorescence probe for imaging of mitochondrial hypochlorous acid, Sensors Actuators B Chem., 344, 130210, https://doi.org/10.1016/j.snb.2021.130210.

    Article  CAS  Google Scholar 

  121. Zhu, J., Miao, C., and Wang, X. (2023) Designing a turn-on ultrasensitive fluorescent probe based on ICT-FRET for detection and bioimaging of hypochlorous acid, Spectrochim. Acta Part A Mol. Biomol. Spectroscopy, 294, 122546, https://doi.org/10.1016/j.saa.2023.122546.

    Article  CAS  Google Scholar 

  122. Song, G. J., Ma, H. L., Luo, J., Cao, X. Q., and Zhao, B. X. (2018) A new ratiometric fluorescent probe for sensing HOCl based on TBET in real time, Dyes Pigments, 148, 206-211, https://doi.org/10.1016/j.dyepig.2017.09.022.

    Article  CAS  Google Scholar 

  123. Yan, Y. H., He, X. Y., Su, L., Miao, J. Y., and Zhao, B. X. (2019) A new FRET-based ratiometric fluorescence probe for hypochlorous acid and its imaging in living cells, Talanta, 201, 330-334, https://doi.org/10.1016/j.talanta.2019.04.024.

    Article  CAS  PubMed  Google Scholar 

  124. Shen, S. L., Zhang, X. F., Ge, Y. Q., Zhu, Y., and Cao, X. Q. (2018) A novel ratiometric fluorescent probe for the detection of HOCl based on FRET strategy, Sensors Actuators B Chem., 254, 736-741, https://doi.org/10.1016/j.snb.2017.07.158.

    Article  CAS  Google Scholar 

  125. Li, L. K., Hou, Y. M., Liu, X. C., Tian, M. J., Ma, Q. J., Zhu, N. N., et al. (2022) An ICT-FRET-based fluorescent probe for the ratiometric sensing of hypochlorous acid based on a coumarin-naphthalimide derivative, New J. Chem., 46, 6596-6602, https://doi.org/10.1039/D2NJ00491G.

    Article  CAS  Google Scholar 

  126. Mulay, S. V., Choi, M., Jang, Y. J., Kim, Y., Jon, S., and Churchill, D. G. (2016) Enhanced fluorescence turn-on imaging of hypochlorous acid in living immune and cancer cells, Chem. Eur. J., 22, 9642-9648, https://doi.org/10.1002/chem.201601270.

    Article  CAS  PubMed  Google Scholar 

  127. Niu, H., Liu, J., O’Connor, H. M., Gunnlaugsson, T., James, T. D., and Zhang, H. (2023) Photoinduced electron transfer (PeT) based fluorescent probes for cellular imaging and disease therapy, Chem. Soc. Rev., 52, 2322-2357, https://doi.org/10.1039/D1CS01097B.

    Article  CAS  PubMed  Google Scholar 

  128. Zheng, Y., Wu, S., Bing, Y., Li, H., Liu, X., Li, W., et al. (2023) A simple ICT-based fluorescent probe for HOCl and bioimaging applications, Biosensors, 13, 744, https://doi.org/10.3390/bios13070744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hao, M., Chi, W., Wang, C., Xu, Z., Li, Z., and Liu, X. (2020) Molecular origins of photoinduced backward intramolecular charge transfer, J. Phys. Chem. C, 124, 16820-16826, https://doi.org/10.1021/acs.jpcc.0c04218.

    Article  CAS  Google Scholar 

  130. Shao, S., Yang, T., Han, Y. (2023) A TICT-based fluorescent probe for hypochlorous acid and its application to cellular and zebrafish imaging, Sensors Actuators B Chem., 392, 134041, https://doi.org/10.1016/j.snb.2023.134041.

    Article  CAS  Google Scholar 

  131. Wu, L., Yang, Q., Liu, L., Sedgwick, A. C., Cresswell, A. J., Bull, S. D., et al. (2018) ESIPT-based fluorescence probe for the rapid detection of hypochlorite (HOCl/ClO−), Chem. Commun., 54, 8522-8525, https://doi.org/10.1039/C8CC03717E.

    Article  CAS  Google Scholar 

  132. Sedgwick, A. C., Wu, L., Han, H. H., Bull, S. D., He, X. P., James, T. D., et al. (2018) Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents, Chem. Soc. Rev., 47, 8842-8880, https://doi.org/10.1039/C8CS00185E.

    Article  CAS  PubMed  Google Scholar 

  133. Reut, V. E., Gorudko, I. V., Grigorieva, D. V., Sokolov, A. V., and Panasenko, O. M. (2022) Fluorescent probes for HOCl detection in living cells, Russ. J. Bioorg. Chem., 48, 467-490, https://doi.org/10.1134/S1068162022030165.

    Article  CAS  Google Scholar 

  134. Xu, K., Luan, D., Wang, X., Hu, B., Liu, X., Kong, F., et al. (2016) An ultrasensitive cyclization-based fluorescent probe for imaging native HOBr in live cells and zebrafish, Angewandte Chemie Int. Edn., 55, 12751-12754, https://doi.org/10.1002/anie.201606285.

    Article  CAS  Google Scholar 

  135. Zhang, X., Liu, C., Zhu, H., Wang, K., Liu, M., Li, X., et al. (2024) A novel benzothiazolin-based fluorescent probe for hypobromous acid and its application in environment and biosystems, Talanta, 266, 124969, https://doi.org/10.1016/j.talanta.2023.124969.

    Article  CAS  PubMed  Google Scholar 

  136. Fang, Y., and Dehaen, W. (2021) Fluorescent probes for selective recognition of hypobromous acid: achievements and future perspectives, Molecules, 26, 363, https://doi.org/10.3390/molecules26020363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Yuan, L., Wang, L., Agrawalla, B. K., Park, S. J., Zhu, H., Sivaraman, B., et al. (2015) Development of targetable two-photon fluorescent probes to image hypochlorous acid in mitochondria and lysosome in live cell and inflamed mouse model, J. Am. Chem. Soc., 137, 5930-5938, https://doi.org/10.1021/jacs.5b00042.

    Article  CAS  PubMed  Google Scholar 

  138. Xiao, H., Li, J., Zhao, J., Yin, G., Quan, Y., Wang, J., et al. (2015) A colorimetric and ratiometric fluorescent probe for ClO− targeting in mitochondria and its application in vivo, J. Mater. Chem. B, 3, 1633-1638, https://doi.org/10.1039/C4TB02003K.

    Article  CAS  PubMed  Google Scholar 

  139. Niu, H., Chen, K., Xu, J., Zhu, X., Cao, W., Wang, Z., et al. (2019) Mitochondria-targeted fluorescent probes for oxidative stress imaging, Sensors Actuators B Chem., 299, 126938, https://doi.org/10.1016/j.snb.2019.126938.

    Article  CAS  Google Scholar 

  140. Zhu, N., Guo, X., Chang, Y., Shi, Z., Jin, L. Y., and Feng, S. (2022) A mitochondria-tracing fluorescent probe for real-time detection of mitochondrial dynamics and hypochlorous acid in live cells, Dyes Pigments, 201, 110227, https://doi.org/10.1016/j.dyepig.2022.110227.

    Article  CAS  Google Scholar 

  141. Jiang, C., Xu, X., and Yao, C. (2022) A ratiometric fluorescence probe for imaging endoplasmic reticulum (ER) hypochlorous acid in living cells undergoing excited state intramolecular proton transfer, Spectrochim. Acta Part A Mol. Biomol. Spectroscopy, 273, 121075, https://doi.org/10.1016/j.saa.2022.121075.

    Article  CAS  Google Scholar 

  142. Yang, T., Sun, J., Yao, W., and Gao, F. (2020) A two-photon fluorescent probe for turn-on monitoring HOCl level in endoplasmic reticulum, Dyes Pigments, 180, 108435, https://doi.org/10.1016/j.dyepig.2020.108435.

    Article  CAS  Google Scholar 

  143. Kelmanson, I. V., Shokhina, A. G., Kotova, D. A., Pochechuev, M. S., Ivanova, A. D., Kostyuk, A. I., et al. (2021) In vivo dynamics of acidosis and oxidative stress in the acute phase of an ischemic stroke in a rodent model, Redox Biol., 48, 102178, https://doi.org/10.1016/j.redox.2021.102178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Saeidnia, S., Manayi, A., and Abdollahi, M. (2016) From in vitro experiments to in vivo and clinical studies; pros and cons, Curr. Drug Discov. Technol., 12, 218-224, https://doi.org/10.2174/1570163813666160114093140.

    Article  CAS  Google Scholar 

  145. Shang, Z., Yang, X., Meng, Q., Tian, S., and Zhang, Z. (2023) A ratiometric near-infrared fluorescent probe for the detection and monitoring of hypochlorous acid in rheumatoid arthritis model and real water samples, Smart Molecules, 1, e20220007, https://doi.org/10.1002/smo.20220007.

    Article  Google Scholar 

  146. Xu, Q., Lee, K. A., Lee, S., Lee, K. M., Lee, W. J., and Yoon, J. (2013) A highly specific fluorescent probe for hypochlorous acid and its application in imaging microbe-induced hocl production, J. Am. Chem. Soc., 135, 9944-9949, https://doi.org/10.1021/ja404649m.

    Article  CAS  PubMed  Google Scholar 

  147. Xiong, H., He, L., Zhang, Y., Wang, J., Song, X., and Yang, Z. (2019) A ratiometric fluorescent probe for the detection of hypochlorous acid in living cells and zebra fish with a long wavelength emission, Chinese Chem. Lett., 30, 1075-1077, https://doi.org/10.1016/j.cclet.2019.02.008.

    Article  CAS  Google Scholar 

  148. Feng, H., Meng, Q., Wang, Y., Duan, C., Wang, C., Jia, H., et al. (2018) Responsive fluorescence probe for selective and sensitive detection of hypochlorous acid in live cells and animals, Chem. Asian J., 13, 2611-2618, https://doi.org/10.1002/asia.201800957.

    Article  CAS  PubMed  Google Scholar 

  149. Zhang, Y., Ma, L., Tang, C., Pan, S., Shi, D., Wang, S., et al. (2018) A highly sensitive and rapidly responding fluorescent probe based on a rhodol fluorophore for imaging endogenous hypochlorite in living mice, J. Mater. Chem. B, 6, 725-731, https://doi.org/10.1039/C7TB02862H.

    Article  CAS  PubMed  Google Scholar 

  150. Yang, J., Zheng, W., Shen, Y., Xu, Y., Lv, G., and Li, C. (2020) A novel near-infrared fluorescent probe based on phenoxazine for the specific detection of HOCl, J. Luminescence, 226, 117460, https://doi.org/10.1016/j.jlumin.2020.117460.

    Article  CAS  ADS  Google Scholar 

  151. Huang, Y., Zhang, P., Gao, M., Zeng, F., Qin, A., Wu, S., et al. (2016) Ratiometric detection and imaging of endogenous hypochlorite in live cells and in vivo achieved by using an aggregation induced emission (AIE)-based nanoprobe, Chem. Commun., 52, 7288-7291, https://doi.org/10.1039/C6CC03415B.

    Article  CAS  Google Scholar 

  152. Teng, H., Tian, J., Sun, D., Xiu, M., Zhang, Y., Qiang, X., et al. (2020) A mitochondria-specific fluorescent probe based on triazolopyridine formation for visualizing endogenous hypochlorous acid in living cells and zebrafish, Sensors Actuators B Chem., 319, 128288, https://doi.org/10.1016/j.snb.2020.128288.

    Article  CAS  Google Scholar 

  153. Miesenböck, G., De Angelis, D. A., and Rothman, J. E. (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins, Nature, 394, 192-195, https://doi.org/10.1038/28190.

    Article  PubMed  ADS  Google Scholar 

  154. Tang, S., Wong, H. C., Wang, Z. M., Huang, Y., Zou, J., Zhuo, Y., et al. (2011) Design and application of a class of sensors to monitor Ca2+ dynamics in high Ca2+ concentration cellular compartments, Proc. Natl. Acad. Sci. USA, 108, 16265-16270, https://doi.org/10.1073/pnas.1103015108.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  155. Wang, Z. M., Tang, S., Messi, M. L., Yang, J. J., and Delbono, O. (2012) Residual sarcoplasmic reticulum Ca2+ concentration after Ca2+ release in skeletal myofibers from young adult and old mice, Pflugers Arch. Eur. J. Physiol., 463, 615-624, https://doi.org/10.1007/s00424-012-1073-3.

    Article  CAS  Google Scholar 

  156. Zhao, F. L., Zhang, C., Zhang, C., Tang, Y., and Ye, B. C. (2016) A genetically encoded biosensor for in vitro and in vivo detection of NADP+, Biosensors Bioelectronics, 77, 901-906, https://doi.org/10.1016/j.bios.2015.10.063.

    Article  CAS  PubMed  Google Scholar 

  157. Penjweini, R., Andreoni, A., Rosales, T., Kim, J., Brenner, M. D., Sackett, D. L., et al. (2018) Intracellular oxygen mapping using a myoglobin-mCherry probe with fluorescence lifetime imaging, J. Biomed. Optics, 23, 1, https://doi.org/10.1117/1.JBO.23.10.107001.

    Article  Google Scholar 

  158. Alspaugh, G., Roarke, B., Chand, A., Penjweini, R., Andreoni, A., and Knutson, J. R. (2021) Developing analysis protocols for monitoring intracellular oxygenation using fluorescence lifetime imaging of myoglobin-mCherry, Methods Mol. Biol., 2304, 315-337, https://doi.org/10.1007/978-1-0716-1402-0_17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Yakhnin, A. V., Vinokurov, L. M., Surin, A. K., and Alakhov, Y. B. (1998) Green fluorescent protein purification by organic extraction, Protein Express. Purif., 14, 382-386, https://doi.org/10.1006/prep.1998.0981.

    Article  CAS  Google Scholar 

  160. Tsien, R. Y. (2003) The green fluorescent protein, Annu. Rev. Biochem., 67, 509-544, https://doi.org/10.1146/annurev.biochem.67.1.509.

    Article  Google Scholar 

  161. Barondeau, D. P., Putnam, C. D., Kassmann, C. J., Tainer, J. A., and Getzoff, E. D. (2003) Mechanism and energetics of green fluorescent protein chromophore synthesis revealed by trapped intermediate structures, Proc. Natl. Acad. Sci. USA, 100, 12111-12116, https://doi.org/10.1073/pnas.2133463100.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  162. Ward, W. W., and Bokman, S. H. (1982) Reversible denaturation of Aequorea green-fluorescent protein: physical separation and characterization of the renatured protein, Biochemistry, 21, 4535-4540, https://doi.org/10.1021/bi00262a003.

    Article  CAS  PubMed  Google Scholar 

  163. Fukuda, H., Arai, M., and Kuwajima, K. (2000) Folding of green fluorescent protein and the Cycle3 mutant, Biochemistry, 39, 12025-12032, https://doi.org/10.1021/bi000543l.

    Article  CAS  PubMed  Google Scholar 

  164. Doi, N., and Yanagawa, H. (1999) Design of generic biosensors based on green fluorescent proteins with allosteric sites by directed evolution, FEBS Lett., 453, 305-307, https://doi.org/10.1016/S0014-5793(99)00732-2.

    Article  CAS  PubMed  Google Scholar 

  165. Baird, G. S., Zacharias, D. A., and Tsien, R. Y. (1999) Circular permutation and receptor insertion within green fluorescent proteins, Proc. Natl. Acad. Sci. USA, 96, 11241-11246, https://doi.org/10.1073/pnas.96.20.11241.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  166. Griesbeck, O., Baird, G. S., Campbell, R. E., Zacharias, D. A., and Tsien, R. Y. (2001) Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications, J. Biol. Chem., 276, 29188-29194, https://doi.org/10.1074/jbc.M102815200.

    Article  CAS  PubMed  Google Scholar 

  167. Kitaguchi, T., Oya, M., Wada, Y., Tsuboi, T., and Miyawaki, A. (2013) Extracellular calcium influx activates adenylate cyclase 1 and potentiates insulin secretion in MIN6 cells, Biochem. J., 450, 365-373, https://doi.org/10.1042/BJ20121022.

    Article  CAS  PubMed  Google Scholar 

  168. Odaka, H., Arai, S., Inoue, T., and Kitaguchi, T. (2014) Genetically-encoded yellow fluorescent cAMP indicator with an expanded dynamic range for dual-color imaging, PLoS One, 9, e100252, https://doi.org/10.1371/journal.pone.0100252.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  169. Harada, K., Ito, M., Wang, X., Tanaka, M., Wongso, D., Konno, A., et al. (2017) Red fluorescent protein-based cAMP indicator applicable to optogenetics and in vivo imaging, Sci. Rep., 7, 1-9, https://doi.org/10.1038/s41598-017-07820-6.

    Article  CAS  ADS  Google Scholar 

  170. Kostyuk, A. I., Demidovich, A. D., Kotova, D. A., Belousov, V. V., and Bilan, D. S. (2019) Circularly permuted fluorescent protein-based indicators: history, principles, and classification, Int. J. Mol. Sci., 20, 4200, https://doi.org/10.3390/ijms20174200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Kostyuk, A. I., Tossounian, M.-A., Panova, A. S., Thauvin, M., Raevskii, R. I., Ezeriņa, D., et al. (2022) Hypocrates is a genetically encoded fluorescent biosensor for (pseudo)hypohalous acids and their derivatives, Nat. Commun., 13, 1-17, https://doi.org/10.1038/s41467-021-27796-2.

    Article  CAS  Google Scholar 

  172. Loi, V. Van, Harms, M., Müller, M., Huyen, N. T. T., Hamilton, C. J., Hochgräfe, F., et al. (2017) Real-time imaging of the bacillithiol redox potential in the Human pathogen Staphylococcus aureus using a genetically encoded bacilliredoxin-fused redox biosensor, Antioxid. Redox Signal., 26, 835-848, https://doi.org/10.1089/ars.2016.6733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Becker, J., Gießelmann, G., Hoffmann, S. L., and Wittmann, C. (2018) Corynebacterium glutamicum for sustainable bioproduction: from metabolic physiology to systems metabolic engineering, in Synthetic Biology – Metabolic Engineering. Advances in Biochemical Engineering/Biotechnology (Zhao, H., Zeng, A. P., eds), vol. 162, pp. 217–263, Springer, Cham, https://doi.org/10.1007/10_2016_21.

  174. Tung, Q. N., Loi, V. Van, Busche, T., Nerlich, A., Mieth, M., Milse, J., et al. (2019) Stable integration of the Mrx1-roGFP2 biosensor to monitor dynamic changes of the mycothiol redox potential in Corynebacterium glutamicum, Redox Biol., 20, 514-525, https://doi.org/10.1016/j.redox.2018.11.012.

    Article  CAS  PubMed  Google Scholar 

  175. Shokhina, A. G., Kostyuk, A. I., Ermakova, Y. G., Panova, A. S., Staroverov, D. B., Egorov, E. S., et al. (2019) Red fluorescent redox-sensitive biosensor Grx1-roCherry, Redox Biol., 21, 101071, https://doi.org/10.1016/j.redox.2018.101071.

    Article  CAS  PubMed  Google Scholar 

  176. Müller, A., Schneider, J. F., Degrossoli, A., Lupilova, N., Dick, T. P., and Leichert, L. I. (2017) Systematic in vitro assessment of responses of roGFP2-based probes to physiologically relevant oxidant species, Free Radic. Biol. Med., 106, 329-338, https://doi.org/10.1016/j.freeradbiomed.2017.02.044.

    Article  CAS  PubMed  Google Scholar 

  177. Liang, X., Kaya, A., Zhang, Y., Le, D. T., Hua, D., and Gladyshev, V. N. (2012) Characterization of methionine oxidation and methionine sulfoxide reduction using methionine-rich cysteine-free proteins, BMC Biochem., 13, 1-10, https://doi.org/10.1186/1471-2091-13-21.

    Article  CAS  Google Scholar 

  178. Sharov, V. S., Ferrington, D. A., Squier, T. C., and Schöneich, C. (1999) Diastereoselective reduction of protein-bound methionine sulfoxide by methionine sulfoxide reductase, FEBS Lett., 455, 247-250, https://doi.org/10.1016/S0014-5793(99)00888-1.

    Article  CAS  PubMed  Google Scholar 

  179. Kuldyushev, N., Schönherr, R., Coburger, I., Ahmed, M., Hussein, R. A., Wiesel, E., et al. (2022) A GFP-based ratiometric sensor for cellular methionine oxidation, Talanta, 243, 123332, https://doi.org/10.1016/j.talanta.2022.123332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Umezawa, Y., Shimada, T., Kori, A., Yamada, K., and Ishihama, A. (2008) The uncharacterized transcription factor YdhM is the regulator of the nemA gene, encoding N-ethylmaleimide reductase, J. Bacteriol., 190, 5890-5897, https://doi.org/10.1128/JB.00459-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Lee, C., Shin, J., and Park, C. (2013) Novel regulatory system nemRA-gloA for electrophile reduction in Escherichia coli K-12, Mol. Microbiol., 88, 395-412, https://doi.org/10.1111/mmi.12192.

    Article  CAS  PubMed  Google Scholar 

  182. Gray, M. J., Wholey, W. Y., Parker, B. W., Kim, M., and Jakob, U. (2013) NemR is a bleach-sensing transcription factor, J. Biol. Chem., 288, 13789-13798, https://doi.org/10.1074/jbc.M113.454421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Waddell, W. J., and Bates, R. G. (1969) Intracellular pH, Physiol. Rev., 49, 285-329, https://doi.org/10.1152/physrev.1969.49.2.285.

    Article  CAS  PubMed  Google Scholar 

  184. Bilan, D. S., and Belousov, V. V. (2018) In vivo imaging of hydrogen peroxide with HyPer probes, Antioxid. Redox Signal., 29, 569-584, https://doi.org/10.1089/ars.2018.7540.

    Article  CAS  PubMed  Google Scholar 

  185. Niethammer, P., Grabher, C., Look, A. T., and Mitchison, T. J. (2009) A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish, Nature, 459, 996-999, https://doi.org/10.1038/nature08119.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Science Foundation, grants nos. 20-15-00390 (chapters “Introduction” and “Main Types of Biologically Significant Reactive Halogen Species: HOCl, HOBr, HOSCN”) and 22-15-00299 (chapters “Approaches to Investigation of Reactive Halogen Species” and “Classification of Synthetic Fluorescent Indicators of Reactive Halogen Species”).

Author information

Authors and Affiliations

Authors

Contributions

Y.V.Kh., V.A.K., V.V.Ch., and A.V.K. writing of the sections “Approaches to Investigation of Reactive Halogen Species”, “Classification of Synthetic Fluorescent Indicators of Reactive Halogen Species”, “Conclusions”; N.P.G., O.M.P., and A.V.S. writing of the sections “Introduction” and “Main Types of Biologically Significant Reactive Halogen Species: HOCl, HOBr, HOSCN”; A.V.S. and D.S.B. editing of the text of the article.

Corresponding authors

Correspondence to Yuliya V. Khramova, Alexey V. Sokolov or Dmitry S. Bilan.

Ethics declarations

This work does not contain any studies involving human and animal subjects. The authors of this work declare that they have no conflicts of interest.

Additional information

Translated from Uspekhi Biologicheskoi Khimii, 2024, Vol. 64, pp. 179-218.

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khramova, Y.V., Katrukha, V.A., Chebanenko, V.V. et al. Reactive Halogen Species: Role in Living Systems and Current Research Approaches. Biochemistry Moscow 89 (Suppl 1), S90–S111 (2024). https://doi.org/10.1134/S0006297924140062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297924140062

Keywords

Navigation