Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Cost and performance analysis as a valuable tool for battery material research

Abstract

Cost and performance analysis is a powerful tool to support material research for battery energy storage, but it is rarely applied in the field and often misinterpreted. Widespread use of such an analysis at the stage of material discovery would help to focus battery research on practical solutions. When correctly used and well detailed, it can effectively direct efforts towards selecting appropriate materials for commercial applications. Using sodium-ion batteries as an example, we simulate the energy density and the cost of battery packs with several sodium-ion cathode materials taken from the literature in three case studies that illustrate how to identify the most promising solutions from the results of the model. Using publicly available information on material properties and open-source software, we demonstrate how a battery cost and performance analysis could be implemented using typical data from laboratory-scale studies on new energy storage materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electrode potentials of cathode and anode and resulting cell voltages of the materials analysed in the lower cut-off voltage study.
Fig. 2: Electrode potentials of cathode and anode and resulting cell voltages of the materials analysed in the study of pre-sodiation for capacity increase of cathode materials.
Fig. 3: Electrode potentials of cathode and anode and resulting cell voltages of the materials analysed in the study of pre-sodiation for first-cycle sodium loss compensation.

Similar content being viewed by others

References

  1. Mauler, L., Duffner, F. & Leker, J. Economies of scale in battery cell manufacturing: the impact of material and process innovations. Appl. Energy 286, 116499 (2021).

    Article  Google Scholar 

  2. Duffner, F., Wentker, M., Greenwood, M. & Leker, J. Battery cost modeling: a review and directions for future research. Renew. Sustain. Energy Rev. 127, 109872 (2020).

    Article  Google Scholar 

  3. Meister, P. et al. Best practice: performance and cost evaluation of lithium ion battery active materials with special emphasis on energy efficiency. Chem. Mater. 28, 7203–7217 (2016).

    Article  CAS  Google Scholar 

  4. Greenwood, M., Wentker, M. & Leker, J. A bottom-up performance and cost assessment of lithium-ion battery pouch cells utilizing nickel-rich cathode active materials and silicon–graphite composite anodes. J. Power Sources Adv. 9, 100055 (2021).

    Article  CAS  Google Scholar 

  5. Vaalma, C., Buchholz, D., Weil, M. & Passerini, S. A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 3, 18013 (2018).

    Article  ADS  Google Scholar 

  6. Mauler, L., Duffner, F., Zeier, W. G. & Leker, J. Battery cost forecasting: a review of methods and results with an outlook to 2050. Energy Environ. Sci. 14, 4712–4739 (2021).

    Article  Google Scholar 

  7. Moon, H. et al. Bio-waste-derived hard carbon anodes through a sustainable and cost-effective synthesis process for sodium-ion batteries. ChemSusChem 16, e202201713 (2023).

    Article  CAS  PubMed  Google Scholar 

  8. Yalman, E. et al. Optimization of electrochemical presodiation parameters of Na‐ion full cells for stable solid–electrolyte interface formation: hard carbon rods from waste firefighter suits. Energy Technol. 11, 2300014 (2023).

    Article  CAS  Google Scholar 

  9. Zhang, R. et al. Long-life lithium-ion batteries realized by low-Ni, Co-free cathode chemistry. Nat. Energy 8, 695–702 (2023).

    Article  ADS  CAS  Google Scholar 

  10. Innocenti, A. et al. Practical cell design for PTMA-based organic batteries: an experimental and modeling study. ACS Appl. Mater. Interfaces https://doi.org/10.1021/acsami.3c11838 (2023).

  11. Johansson, P. et al. Ten ways to fool the masses when presenting battery research. Batter. Supercaps 4, 1785–1788 (2021).

    Article  Google Scholar 

  12. Dunn, B., Kamath, H. & Tarascon, J.-M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Schmuch, R., Wagner, R., Hörpel, G., Placke, T. & Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3, 267–278 (2018).

    Article  ADS  CAS  Google Scholar 

  14. Greim, P., Solomon, A. A. & Breyer, C. Assessment of lithium criticality in the global energy transition and addressing policy gaps in transportation. Nat. Commun. 11, 4570 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zuo, W. et al. Layered oxide cathodes for sodium-ion batteries: storage mechanism, electrochemistry, and techno-economics. Acc. Chem. Res. 56, 284–296 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tian, Y. et al. Promises and challenges of next-generation ‘beyond Li-ion’ batteries for electric vehicles and grid decarbonization. Chem. Rev. 121, 1623–1669 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Duffner, F. et al. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat. Energy 6, 123–134 (2021).

    Article  ADS  CAS  Google Scholar 

  18. Roberts, S. & Kendrick, E. The re-emergence of sodium ion batteries: testing, processing, and manufacturability. Nanotechnol. Sci. Appl. 11, 23–33 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tapia-Ruiz, N. et al. 2021 roadmap for sodium-ion batteries. J. Phys. Energy 3, 031503 (2021).

    Article  ADS  CAS  Google Scholar 

  20. Manthiram, A., Fu, Y., Chung, S.-H., Zu, C. & Su, Y.-S. Rechargeable lithium–sulfur batteries. Chem. Rev. 114, 11751–11787 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Zhu, K. et al. How far away are lithium–sulfur batteries from commercialization? Front. Energy Res. 7, 123 (2019).

    Article  Google Scholar 

  22. Maroni, F., Dongmo, S., Gauckler, C., Marinaro, M. & Wohlfahrt-Mehrens, M. Through the maze of multivalent‐ion batteries: a critical review on the status of the research on cathode materials for Mg2+ and Ca2+ ions insertion. Batter. Supercaps 4, 1221–1251 (2021).

    Article  CAS  Google Scholar 

  23. Elia, G. A. et al. An overview and prospective on Al and Al-ion battery technologies. J. Power Sources 481, 228870 (2021).

    Article  CAS  Google Scholar 

  24. Zhang, L., Wang, H., Zhang, X. & Tang, Y. A review of emerging dual‐ion batteries: fundamentals and recent advances. Adv. Funct. Mater. 31, 2010958 (2021).

    Article  CAS  Google Scholar 

  25. Zhao, X., Zhao-Karger, Z., Fichtner, M. & Shen, X. Halide-based materials and chemistry for rechargeable batteries. Angew. Chem. Int. Ed. 59, 5902–5949 (2020).

    Article  CAS  Google Scholar 

  26. Liang, Y. & Yao, Y. Positioning organic electrode materials in the battery landscape. Joule 2, 1690–1706 (2018).

    Article  CAS  Google Scholar 

  27. Lu, Y. & Chen, J. Prospects of organic electrode materials for practical lithium batteries. Nat. Rev. Chem. 4, 127–142 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Esser, B. et al. A perspective on organic electrode materials and technologies for next generation batteries. J. Power Sources 482, 228814 (2021).

    Article  CAS  Google Scholar 

  29. Rudola, A. et al. Commercialisation of high energy density sodium-ion batteries: Faradion’s journey outlook. J. Mater. Chem. A 9, 8279–8302 (2021).

    Article  CAS  Google Scholar 

  30. CATL. CATL unveils its latest breakthrough technology by releasing its first generation of sodium-ion batteries. CATL https://www.catl.com/en/news/665.html (2021).

  31. Sapunkov, O., Pande, V., Khetan, A., Choomwattana, C. & Viswanathan, V. Quantifying the promise of ‘beyond’ Li–ion batteries. Transl. Mater. Res. 2, 045002 (2015).

    Article  Google Scholar 

  32. Grande, L. et al. The lithium/air battery: still an emerging system or a practical reality? Adv. Mater. 27, 784–800 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Raccichini, R., Varzi, A., Wei, D. & Passerini, S. Critical insight into the relentless progression toward graphene and graphene-containing materials for lithium-ion battery anodes. Adv. Mater. 29, 1603421 (2017).

    Article  Google Scholar 

  34. Parker, J. F., Ko, J. S., Rolison, D. R. & Long, J. W. Translating materials-level performance into device-relevant metrics for zinc-based batteries. Joule 2, 2519–2527 (2018).

    Article  CAS  Google Scholar 

  35. Wentker, M., Greenwood, M. & Leker, J. A bottom-up approach to lithium-ion battery cost modeling with a focus on cathode active materials. Energies 12, 504 (2019).

    Article  CAS  Google Scholar 

  36. Knehr, K., Kubal, J., Nelson, P. & Ahmed, S. Battery performance and cost modeling for electric-drive vehicles: a manual for BatPaC v5.0 (US Department of Energy, 2022).

  37. Knehr, K. W., Kubal, J. J., Deva, A., Effat, M. B. & Ahmed, S. From material properties to device metrics: a data-driven guide to battery design. Energy Adv. 2, 1326–1350 (2023).

    Article  Google Scholar 

  38. Belt, J. R. Battery test manual for plug-in hybrid electric vehicles (US Department of Energy, 2010).

  39. Christophersen, J. P. Battery test manual for electric vehicles (US Department of Energy, 2015).

  40. Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 11, 1550 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xie, F., Xu, Z., Guo, Z. & Titirici, M.-M. Hard carbons for sodium-ion batteries and beyond. Prog. Energy Combust. Sci. 2, 042002 (2020).

    Article  Google Scholar 

  42. Moon, H. et al. Assessing the reactivity of hard carbon anodes: linking material properties with electrochemical response upon sodium‐ and lithium‐ion storage. Batter. Supercaps 4, 960–977 (2021).

    Article  CAS  Google Scholar 

  43. Asenbauer, J. et al. The success story of graphite as a lithium-ion anode material — fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustain. Energy Fuels 4, 5387–5416 (2020).

    Article  CAS  Google Scholar 

  44. Fang, S., Bresser, D. & Passerini, S. Transition metal oxide anodes for electrochemical energy storage in lithium‐ and sodium‐ion batteries. Adv. Energy Mater. 10, 1902485 (2020).

    Article  CAS  Google Scholar 

  45. Lakraychi, A. E., Dolhem, F., Vlad, A. & Becuwe, M. Organic negative electrode materials for metal‐ion and molecular‐ion batteries: progress and challenges from a molecular engineering perspective. Adv. Energy Mater. 11, 2101562 (2021).

    Article  CAS  Google Scholar 

  46. Zarrabeitia, M. et al. Role of the voltage window on the capacity retention of P2-Na2/3[Fe1/2Mn1/2]O2 cathode material for rechargeable sodium-ion batteries. Commun. Chem. 5, 11 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yadav, P., Shelke, V., Patrike, A. & Shelke, M. Sodium-based batteries: development, commercialization journey and new emerging chemistries. Oxf. Open Mater. Sci. 3, itac019 (2023).

    Article  Google Scholar 

  48. Kim, J. et al. Unexpected discovery of low-cost maricite NaFePO4 as a high-performance electrode for Na-ion batteries. Energy Environ. Sci. 8, 540–545 (2015).

    Article  CAS  Google Scholar 

  49. Kuze, S. et al. Development of a sodium ion secondary battery. Sumitomo Chemical https://www.sumitomo-chem.co.jp/english/rd/report/files/docs/03_2013e.pdf (2013).

  50. Bianchini, M., Xiao, P., Wang, Y. & Ceder, G. Additional sodium insertion into polyanionic cathodes for higher-energy Na-ion batteries. Adv. Energy Mater. 7, 1700514 (2017).

    Article  Google Scholar 

  51. Liu, Z. et al. Recent progress of P2‐type layered transition‐metal oxide cathodes for sodium‐ion batteries. Chemistry 26, 7747–7766 (2020).

    Article  PubMed  Google Scholar 

  52. Kulkarni, P. et al. A comprehensive review of pre-lithiation/sodiation additives for Li-ion and Na-ion batteries. J. Energy Chem. 76, 479–494 (2023).

    Article  CAS  Google Scholar 

  53. Zou, K. et al. Prelithiation/presodiation techniques for advanced electrochemical energy storage systems: concepts, applications, and perspectives. Adv. Funct. Mater. 31, 2005581 (2021).

    Article  CAS  Google Scholar 

  54. Huang, Z. et al. Progress and challenges of prelithiation technology for lithium‐ion battery. Carbon Energy 4, 1107–1132 (2022).

    Article  CAS  Google Scholar 

  55. Yang, C. et al. Roll-to-roll prelithiation of lithium-ion battery anodes by transfer printing. Nat. Energy 8, 703–713 (2023).

    Article  ADS  CAS  Google Scholar 

  56. Sathiya, M. et al. Dual stabilization and sacrificial effect of Na2CO3 for increasing capacities of Na-ion cells based on P2-NaxMO2 electrodes. Chem. Mater. 29, 5948–5956 (2017).

    Article  CAS  Google Scholar 

  57. Shanmukaraj, D. et al. Highly efficient, cost effective, and safe sodiation agent for high-performance sodium-ion batteries. ChemSusChem 11, 3286–3291 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Niu, Y.-B. et al. High-efficiency cathode sodium compensation for sodium-ion batteries. Adv. Mater. 32, e2001419 (2020).

    Article  PubMed  Google Scholar 

  59. Fernández-Ropero, A. J. et al. Improved sodiation additive and its nuances in the performance enhancement of sodium-ion batteries. ACS Appl. Mater. Interfaces 13, 11814–11821 (2021).

    Article  PubMed  Google Scholar 

  60. Hasa, I., Passerini, S. & Hassoun, J. Toward high energy density cathode materials for sodium-ion batteries: investigating the beneficial effect of aluminum doping on the P2-type structure. J. Mater. Chem. A 5, 4467–4477 (2017).

    Article  CAS  Google Scholar 

  61. Hasa, I., Passerini, S. & Hassoun, J. A rechargeable sodium-ion battery using a nanostructured Sb–C anode and P2-type layered Na0.6Ni0.22Fe0.11Mn0.66O2 cathode. RSC Adv. 5, 48928–48934 (2015).

    Article  ADS  CAS  Google Scholar 

  62. Shellikeri, A. et al. Investigation of pre-lithiation in graphite and hard-carbon anodes using different lithium source structures. J. Electrochem. Soc. 164, A3914 (2017).

    Article  CAS  Google Scholar 

  63. Li, X. et al. Review on comprehending and enhancing the initial Coulombic efficiency of anode materials in lithium-ion/sodium-ion batteries. Nano Energy 77, 105143 (2020).

    Article  CAS  Google Scholar 

  64. Rajagopalan, R. et al. Improved reversibility of Fe3+/Fe4+ redox couple in sodium super ion conductor type Na3Fe2(PO4)3 for sodium-ion batteries. Adv. Mater. 29, 1605694 (2017).

    Article  Google Scholar 

  65. Song, J. et al. Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. J. Am. Chem. Soc. 137, 2658–2664 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Shanghai Metals Market. SMM spot metal prices. SMM https://www.metal.com (2024).

  67. Baumann, M. et al. Prospective sustainability screening of sodium‐ion battery cathode materials. Adv. Energy Mater. 12, 2202636 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Helmholtz Association for basic funding.

Author information

Authors and Affiliations

Authors

Contributions

A.I. and S.P. conceived the idea. A.I. and S.B. read and summarized the relevant literature, carried out the simulations, analysed the results and visualized the data. A.I. wrote the original draft. S.P. revised the original draft, supervised the project and acquired the funding.

Corresponding author

Correspondence to Stefano Passerini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Jens Leker, Arumugam Manthiram, Stephan von Delft and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

In the Supplementary Information, it is possible to access: the data used as input for the simulations of the sodium-ion batteries; additional figures with the comparison of the energy density and the cost of battery packs and the voltage profiles before and after increasing the lower cut-off voltage; details on the implementation of the initial coulombic efficiency of anode and cathode and the use of sacrificial salt as pre-sodiation additive; the spreadsheets with all the relevant simulation results, the data analysis, as well as the original figures.

Supplementary Datasets

Supplementary Datasets

Supplementary Datasets

Supplementary Datasets

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Innocenti, A., Beringer, S. & Passerini, S. Cost and performance analysis as a valuable tool for battery material research. Nat Rev Mater (2024). https://doi.org/10.1038/s41578-024-00657-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41578-024-00657-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing