Skip to main content
Log in

The TOTEM-E Electron Spectrometer for the Strannik Space Mission

  • Published:
Cosmic Research Aims and scope Submit manuscript

Article

—This article describes the construction, principles of operating, and characteristics of the TOTEM- electron spectrometer developed for the Strannik complex of scientific instruments for the Resonance-MKA space project. In the article, analytical characteristics are presented of the qualification model of the instrument, which fully corresponds to the flight unit, and the procedure for functional tests of the instrument is described. The article also describes the structure and principles of functioning of the hardware and software laboratory facility developed for ground calibrations and tests of such a type of instruments. The design of the TOTEM-E instrument offers a new approach to measuring particle fluxes, which allows the accuracy and speed of measurements to be increased. A feature of the proposed scheme is the possibility of simultaneous measurement of electron fluxes in a plane section in the velocity space in the energy range from E0 to 6.5 × E0, where E0 is the minimum particle energy recorded by the instrument. This is achieved by using two conical electrostatic mirrors that take electrons from a flat 360° flow section for subsequent energy analysis and using a coordinate-sensitive detector for simultaneous particle registration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. Louarn, P., Roux, A., de Feraudy, H., et al., Trapped electrons as a free energy source for the auroral kilometric radiation, J. Geophys. Res., 1990, vol. 95, no. A5, pp. 5983–5995. https://doi.org/10.1029/JA095iA05p05983

    Article  ADS  Google Scholar 

  2. Lindqvist, P.A. and Marklund, G.T., A statistical study of high-altitude electric fields measured on the viking satellite, J. Geophys. Res., 1990, vol. 95, no. A5, pp. 5867–5876. https://doi.org/10.1029/JA095iA05p05867

    Article  ADS  Google Scholar 

  3. Mozer, F.S. and Temerin, M., Solitary waves and double layers as the source of parallel electric fields in the auroral acceleration region, in High-Latitude Space Plasma Physics, Hultqvist, B. and Hagfors, T., Eds., New York: Plenum Press, 1983, p. 453.

    Google Scholar 

  4. Bostrem, R., Gustafsson, G., Holback, B., et al., Characteristics of solitary waves and weak double layers in the magnetospheric plasma, Phys. Rev. Lett., 1988, vol. 61, pp. 82–85. https://doi.org/10.1103/PhysRevLett.61.82

    Article  ADS  Google Scholar 

  5. Temerin, M. and Lysak, R., Electromagnetic ion cyclotron mode (ELF) waves generated by auroral electron precipitation, J. Geophys. Res., 1984, vol. 89, no. 5, pp. 2489–2859. https://doi.org/10.1029/JA089iA05p02849

    Article  Google Scholar 

  6. Gustafsson, G., Andre, M., Matson, L., et al., On waves below the local proton gyrofrequency in auroral acceleration regions, J. Geophys. Res., 1990, vol. 95, no. A5, pp. 5889–5904. https://doi.org/10.1029/JA095iA05p05889

    Article  ADS  Google Scholar 

  7. Hasegawa, A. and Uberoi, C., The Alfven wave, DOE Critical Review Series, 1982, DOE/TIC-11197. https://doi.org/10.2172/5259641

  8. Goertz, C.K., Electron acceleration via kinetic alfven waves, in Proc. Int. Colloquium “Comparative Study of Magnetospheric Systems,” Londe-les-Maures, France, September 9–13, 1985, Toulouse: Cepadues-Editions, 1986, pp. 357–370.

  9. Volokitin, A.S. and Dubinin, E.M., The turbulence of alfven waves in the polar magnetosphere of the Earth, Planet. Space Sci., 1989, vol. 37, no. 7, pp. 761–765.

    Article  ADS  Google Scholar 

  10. Lutsenko, V.N. and Kudela, K., Almost monoenergetic ions near the Earth’s magnetosphere boundaries, Geophys. Res. Lett., 1999, vol. 26, pp. 413–416.

    Article  CAS  ADS  Google Scholar 

  11. Lutsenko, V.N., Almost monoenergetic ions: New support for Alfven ideas on the role of electric currents in space plasmas?, Phys. Chem. Earth. C, 2001, vol. 26, no. 8, pp. 615–619. https://doi.org/10.1016/S1464-1917(01)00057-5

    Article  Google Scholar 

  12. Kudela, K., Lutsenko, V.N., Sarris, E.T., et al., DOK-2 ion fluxes upstream from the bow shock: Characteristics from 4 years of Interball-1 measurements, Planet. Space Sci., 2005, vol. 53, nos. 1–3, pp. 59–64. https://doi.org/10.1016/j.pss.2004.09.029

    Article  ADS  Google Scholar 

  13. Slivka, M. and Kudela, K., Anisotropy of proton fluxes in neutral sheet region measured by DOK2 on interball-1, Planet. Space Sci., 2005, vol. 53, nos. 1–3, pp. 217–227. https://doi.org/10.1016/j.pss.2004.09.047

    Article  CAS  ADS  Google Scholar 

  14. Lutsenko, V.N., Kirpichev, I.P., Grechko, T.V., et al., Source positions of energetic particles responsible for the fine dispersion structures: Numerical simulation results, Planet. Space Sci., 2005, vol. 53, nos. 1–3, pp. 275–281. https://doi.org/10.1016/j.pss.2004.09.053

    Article  ADS  Google Scholar 

  15. Martin, C., Jelinsky, P., Lampton, M., et al., Wedge-and-strip anodes for centroid-finding position-sensitive photon and particle detectors, Rev. Sci. Instrum., 1981, vol. 52, no. 7, pp. 1067–1074. https://doi.org/10.1063/1.1136710

    Article  CAS  ADS  Google Scholar 

  16. Vaisberg, O.L., Zhuravlev, R.N., Moiseenko, D.A., et al., Wide angle ion energy-mass analyzer Aries-L, Sol. Syst. Res., 2021, vol. 55, no. 6, pp. 562–575. https://doi.org/10.1134/S0038094621060113

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Moiseenko.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moiseenko, D.A., Shestakov, A.Y., Vaisberg, O.L. et al. The TOTEM-E Electron Spectrometer for the Strannik Space Mission. Cosmic Res 62, 42–50 (2024). https://doi.org/10.1134/S0010952523700831

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952523700831

Navigation