Skip to main content
Log in

Mathematical Modeling of Spacecraft in Magnetosphere Plasma

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

The Coulomb software complex for modeling of spacecraft charging in magnetosphere plasma in high and low Earth orbits is described. Physical mechanisms of spacecraft charging and methods of mathematical modeling of this phenomenon in various areas of space are considered. Examples of the calculation results of electrical potential distribution on the spacecraft surface and in the vicinity of the spacecraft in geosynchronous and the low Earth orbits are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. Al’pert, Ya.L., Gurevich, A.V., and Pitaevskii, L.P., Iskusstvennye sputniki v razrezhennoi plazme (Artificial Satellites in Rarefied Plasma), Moscow: Nauka, 1964.

  2. Katz, I., Parks, D.E., Mandell, M.J., et al., A three dimensional dynamic study of electrostatic charging in materials, NASA-CR-135256, National Technical Information Service, 1977.

    Google Scholar 

  3. Roussel, J.-F., Rogier, F., Volpert, D., et al., Spacecraft Plasma Interaction Software (SPIS): Numerical solvers—methods and architecture, Proc. 9th Spacecraft Charging Technology Conf. Tsukuba, Japan, 2005, p. JAXA-SP-05-001E.

  4. Hatta, S., Muranaka, T., Kim, J., et al., Accomplishment of multi-utility spacecraft charging analysis tool (MUSCAT) and its future evolution, Acta Astronaut., 2009, vol. 64, pp. 495–500. https://doi.org/10.1016/j.actaastro.2008.07.023

    Article  ADS  Google Scholar 

  5. Program for calculating the electrification parameters of the COULOMB spacecraft, State Certificate of Computer Software Registration No. 2015615756, Moscow, 2015.

  6. Space environment (natural and artificial)—Plasma environments for generation of worst case electrical potential differences for spacecraft, ISO 19923:2017, International Organization for Standardization (ISO), 2017.

    Google Scholar 

  7. Novikov, L.S., Makletsov, A.A., and Sinolits, V.V., Comparison of Coulomb-2, NASCAP-2K, MUSCAT and SPIS codes for geosynchronous spacecraft charging, Adv. Space Res., 2016, vol. 57, no. 2, pp. 671–680. https://doi.org/10.1016/j.asr.2015.11.003

    Article  ADS  CAS  Google Scholar 

  8. Novikov, L.S., Mileev, V.N., Krupnikov, K.K., et al., Simultaneous investigation of magnetospheric plasma and spacecraft charging, Adv. Space Res., 2008, vol. 42, no. 7, pp. 1307–1312. https://doi.org/10.1016/j.asr.2008.02.019

    Article  ADS  Google Scholar 

  9. Novikov, L.S., Makletsov, A.A., Sinolits, V.V., et al., Charging of geostationary satellite Electro-L2 in the Earth shadow, IEEE Trans. Plasma Sci., 2019, vol. 47, no. 8, pp. 3931–3936. https://doi.org/10.1109/TPS.2019.2917806

    Article  ADS  CAS  Google Scholar 

  10. Mileev, V.N. and Novikov, L.S., Physico-mathematical model of electrification of satellites in geostationary and highly elliptical orbits, in Issledovaniya po geomagnetizmu, aeronomii i fizike Solntsa (Research on Geomagnetism, Aeronomy and Solar Physics), Moscow: Nauka, 1989, vol. 86, pp. 64–98.

  11. Novikov, L.S., Babkin, G.V., Morozov, E.P., et al., Kompleksnaya metodologiya opredeleniya parametrov elektrostaticheskoi zaryadki elektricheskikh polei i proboev na kosmicheskikh apparatakh v usloviyakh ikh radiatsionnoi elektrizatsii (A Comprehensive Methodology for Determining the Parameters of Electrostatic Charging of Electric Fields and Breakdowns on Spacecraft under Conditions of Their Radiation Electrification), Moscow: Izd. TsNIImash, 1995.

  12. Garrett, H.B., The charging of spacecraft surfaces, Rev. Geophys. Space Phys., 1981, vol. 19, no. 4, p. 577. https://doi.org/10.1029/RG019i004p00577

    Article  ADS  CAS  Google Scholar 

  13. Garret, H.B., Review of quantitative models of the 0- to 100-keV near Earth plasma, Rev. Geophys. Space Phys., 1979, vol. 17, no. 3, p. 397. https://doi.org/10.1029/RG017i003p00397

    Article  ADS  Google Scholar 

  14. Garret, H.B., Schwank, D.C., and De Forest, S.E., A statistical analysis of the low-energy geosynchronous plasma environment—I. Electrons, Planet. Space Sci., 1981, vol. 29, no. 10, p. 1021–1044. https://doi.org/10.1016/0032-0633(81)90001-5

    Article  ADS  Google Scholar 

  15. Model’ kosmosa (Model of Cosmos), vol. 2: Vozdeistvie kosmicheskoi sredy na materialy i oborudovanie kosmicheskikh apparatov (Impact of the Space Environment on Spacecraft Materials and Equipment), Novikov, L.S., Ed., Moscow: Izd. KDU, 2007, ch. 1.8–1.9, pp. 236–314.

  16. Katz, I. and Parks, D.E., Space shuttle orbiter charging, J. Spacecr. Rockets, 1983, vol. 20, no. 1, p. 22. https://doi.org/10.2514/3.28352

    Article  ADS  Google Scholar 

  17. Cho, M., Saito, K., and Hamanaga, T., Data analysis of the polar plasma environment for spacecraft charging analysis, Acta Astronaut., 2012, vol. 81, no. 1, pp. 160–173. https://doi.org/10.1016/j.actaastro.2012.07.004

    Article  ADS  CAS  Google Scholar 

  18. Dobretsov, L.N. and Gomoyunova, M.V., Emissionnaya elektronika (Emission Electronics), Moscow: Nauka, 1966.

  19. Bronshtein, I.M. and Fraiman, B.S., Vtorichnaya elektronnaya emissiya (Secondary Electron Emission), Moscow: Nauka, 1969.

  20. Sternglass, E.J., Backscattering of kilovolt electrons from solids, Phys. Rev., 1954, vol. 95, no. 2, pp. 345–358. https://doi.org/10.1103/PhysRev.95.345

    Article  ADS  CAS  Google Scholar 

  21. Whipple, E.C., Potentials of surface in space, Rep. Prog. Phys., 1981, vol. 44, no. 11, p. 1197–1250. https://doi.org/10.1088/0034-4885/44/11/002

    Article  ADS  Google Scholar 

  22. Evstaf’eva, E.N., Rau, E.I., Mileev, V.N., et al., Analysis of charging mechanisms of dielectric targets under the influence of electron irradiation, Perspektivnye materialy, 2010, no. 4, pp. 11–20.

  23. Novikov, L.S., Makletsov, A.A., and Sinolits, V.V., Analysis of recollection and transfer of electrons emitted from charged spacecraft surface using Coulomb-2 code, IEEE Trans. Plasma Sci., 2017, vol. 45, no. 8, pp. 1919–1922. https://doi.org/10.1109/TPS.2017.2669103

    Article  ADS  CAS  Google Scholar 

  24. Adamec, V. and Calderwood, J.H., Electrical conduction in dielectrics at high fields, J. Phys. D: Appl. Phys., 1975, vol. 8, no. 5, pp. 551–560. https://doi.org/10.1109/TPS.2017.2669103

    Article  ADS  CAS  Google Scholar 

  25. Krupnikov, K.K., Mileev, V.N., and Novikov, L.S., A mathematical model of spacecraft charging (‘COULOMB’ tool), Rad. Meas., 1996, vol. 26, no. 3, p. 513. https://doi.org/10.1016/1350-4487(96)00022-4

    Article  CAS  Google Scholar 

  26. Krupnikov, K.K., Mileev, V.N., Novikov, L.S., et al., Measurement of hot magnetospheric plasma at geosynchronous orbit and charging effects, Proc. ESA Symp. Environment Modelling for Space-based Applications, Noordwijk, NL: ESTEC, Spec. Publ., 1996, p. 191.

  27. Ribes, A. and Caremoli, C., SALOME platform component model for numerical simulation, Proc. 31st Annual International Computer Software and Applications Conference COMPSAC 07, Washington, DC, 2007, pp. 553–564. https://doi.org/10.1109/COMPSAC.2007.185

  28. More, J.J., Sorensen, D.C., Hillstrom, K.E., et al., The MINPACK project, in Sources and Development of Mathematical Software, New Jersey: Prentice-Hall, 1984.

    Google Scholar 

  29. Novikov, L.S., Makletsov, A.A., and Sinolits, V.V., Modeling of spacecraft charging dynamics using COULO-MB-2 code, IEEE Trans. Plasma Sci., 2017, vol. 45, no. 8, pp. 915–1918. https://doi.org/10.1109/TPS.2017.2720595

    Article  Google Scholar 

  30. Hindmarsh, A.C., GEAR: Ordinary differential equation system solver, Lawrence Livermore Laboratory Report UCID-30001, 1974, rev. 3, pp. 1–28.

  31. Ferguson, D.C. and Wimberly, S.C., The best GEO daytime spacecraft charging index, Proc. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Grapevine, 2013, AIAA 2013-0810, pp. 11–17. https://doi.org/10.2514/6.2013-810

  32. Mateo-Velez, J.-C., Pignal, C., Balcon, N., et al., GEO spacecraft worst-case charging estimation by numerical simulation, Proc. 13th Spacecraft Charging Technology Conference, Pasadena, CA, 2014, p. hal-01070320.

  33. Toyoda, K. and Ferguson, D.C., Round-robin simulation for GEO worst-case environment for spacecraft charging, Proc. 13th Spacecraft Charging Technology Conference, Pasadena, CA, 2014, p. 171.

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Novikov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, L.S., Makletsov, A.A., Sinolits, V.V. et al. Mathematical Modeling of Spacecraft in Magnetosphere Plasma. Cosmic Res 62, 80–91 (2024). https://doi.org/10.1134/S001095252370079X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001095252370079X

Navigation