Skip to main content
Log in

Decentralized Swarm Control of Small Satellites for Communication Connectivity Maintenance

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

Control of the motion of a swarm of small satellites after a cluster launch is proposed to keep the satellites trajectories in a given area and provide intersatellite communications. The goal of the motion control algorithm is to eliminate the average drift parameter and achieve the required relative trajectory shift in the along-track direction. An analytical study of the proposed motion algorithm is carried out using a linear model of relative motion. The verification of analytical results is performed by swarm motion numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

REFERENCES

  1. Baranov, A.A., Change of spacecraft position in a satellite system, Cosmic Res., 2008, vol. 46, no. 3, pp. 215–218. https://doi.org/10.1134/S0010952508030040

    Article  ADS  Google Scholar 

  2. Ivanov, D., Ovchinnikov, M., and Sakovich, M., Relative pose and inertia determination of unknown satellite using monocular vision, Int. J. Aerosp. Eng., 2018, p. 9731512. https://doi.org/10.1155/2018/9731512

  3. D’Amico, S., Ardaens, J.-S., Gaias, G., et al., Noncooperative rendezvous using angles-only optical navigation: System design and flight results, J. Guid., Control, Dyn., 2013, vol. 36, no. 6, pp. 1576–1595. https://doi.org/10.2514/1.59236

    Article  ADS  Google Scholar 

  4. Matsuka, K., Feldman, A.O., Sorina Lupu, E., et al., Decentralized formation pose estimation for spacecraft swarms, Adv. Space Res., 2021, vol. 67, no. 11, pp. 3527–3545. https://doi.org/10.1016/j.asr.2020.06.016

    Article  ADS  Google Scholar 

  5. Kruger, J. and D’Amico, S., Autonomous angles-only multitarget tracking for spacecraft swarms, Acta Astronaut., 2021, vol. 189, no. 6, pp. 514–529. https://doi.org/10.1016/j.actaastro.2021.08.049

    Article  ADS  Google Scholar 

  6. Jasiobedzki, P., Se, S., Pan, T., et al., Autonomous satellite rendezvous and docking using lidar and model based vision, Proc. of SPIE, The International Society for Optical Engineering. Spaceborne Sensors, 2005, vol. 5798, pp. 54–65. https://doi.org/10.1117/12.604011

  7. Kahr, E., Roth, N., Montenbruck, O., et al., GPS relative navigation for the CanX-4 and CanX-5 formation-flying nanosatellites, J. Spacecr. Rockets, 2018, vol. 55, no. 6, pp. 1545–1558. https://doi.org/10.2514/1.A34117

    Article  ADS  Google Scholar 

  8. Ivanov, D. and Ovchinnikov, M., Constellations and formation flying, Cubesat Handbook, Elsevier, 2021, pp. 135–146. https://doi.org/10.1016/b978-0-12-817884-3.00006-0

    Book  Google Scholar 

  9. Rajan, R.T., Ben-Maor, Sh., Kaderali, Sh., et al., Applications and potentials of intelligent swarms for magnetospheric studies, Acta Astronaut., 2022, vol. 193, pp. 554–571. https://doi.org/10.1016/j.actaastro.2021.07.046

    Article  ADS  Google Scholar 

  10. Foust, R.C., Lupu, E.S., Nakka, Ya., et al., Autonomous in-orbit satellite assembly from a modular heterogeneous swarm, Acta Astronaut., 2020, vol. 169, pp. 191–205. https://doi.org/10.1016/j.actaastro.2020.01.006

    Article  ADS  Google Scholar 

  11. Colombo, C. and McInnes, C., Orbit design for future SpaceChip swarm missions in a planetary atmosphere, Acta Astronaut., 2012, vol. 75, pp. 25–41. https://doi.org/10.1016/j.actaastro.2012.01.004

    Article  ADS  Google Scholar 

  12. Voronina, M.Y. and Shirobokov, M.G., The method of determination of the gravitational field model of an asteroid using a group of small spacecrafts, Cosmic Res., 2022, vol. 60, no. 3, pp. 185–193. https://doi.org/10.1134/S0010952522030091

    Article  ADS  Google Scholar 

  13. Sabatini, M., Palmerini, G.B., and Gasbarri, P., Control laws for defective swarming systems, Adv. Astronaut. Sci., 2015, vol. 153, pp. 749–768.

    Google Scholar 

  14. Shirobokov, M.G. and Trofimov, S.P., Adaptive neural formation-keeping control for satellites in a low-Earth orbit, Cosmic Res., 2021, vol. 59, no. 6, pp. 501–516. https://doi.org/10.1134/S0010952521060113

    Article  ADS  Google Scholar 

  15. Ivanov, D., Monakhova, U., and Ovchinnikov, M., Nanosatellites swarm deployment using decentralized differential drag-based control with communicational constraints, Acta Astronaut., 2019, vol. 159, pp. 646–657. https://doi.org/10.1016/j.actaastro.2019.02.006

    Article  ADS  Google Scholar 

  16. Monakhova, U., Ivanov, D., Mashtakov, Ya., and Shestakov, S., Approaches to studying the performance of swarm decentralized control algorithms, Proc. Int. Astronaut. Congr. International Astronautical Federation, 2021, vol. C1, p. 66330.

  17. Dadashev, R.R. and Shestakov, S.A., Methodology for controlling a group of satellites based on communication graphs, Preprint of the Keldysh Inst. Appl. Math., Moscow, 2022, no. 90. https://doi.org/10.20948/prepr-2022-90

  18. Hill, G.W., Researches in lunar theory, Am. J. Math., 1878, vol. 1, pp. 5–26. https://www.jstor.org/stable/2369430.

    Article  MathSciNet  Google Scholar 

  19. Clohessy, W.H. and Wiltshire, R.S., Terminal guidance system for satellite rendezvous, J. Astronaut. Sci., 1960, vol. 27, no. 9, pp. 653–678. https://doi.org/10.2514/8.8704

    Article  Google Scholar 

  20. Mashtakov, Y., Ovchinnikov, M.Yu., Petrovaet, T., and Tkachev, S., Two-satellite formation flying control by cell-structured solar sail, Acta Astronaut., 2020, vol. 170, pp. 592–600. https://doi.org/10.1016/j.actaastro.2020.02.024

    Article  ADS  Google Scholar 

  21. Barbashin, E.A., Vvedenie v teoriyu ustoichivosti (Introduction to Stability Theory), Moscow: Nauka, 1967.

Download references

Funding

The work was supported by the Russian Science Foundation, project no. 22-21-00845.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Ivanov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Seifina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monakhova, U.V., Shestakov, S.A., Mashtakov, Y.V. et al. Decentralized Swarm Control of Small Satellites for Communication Connectivity Maintenance. Cosmic Res 62, 106–116 (2024). https://doi.org/10.1134/S0010952523700776

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952523700776

Navigation