Skip to main content
Log in

Spectra of Fluctuations of Solar Wind Plasma Parameters near a Shock Wave

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

The paper investigates the characteristics of the power spectra of fluctuations in the density of protons and α particles near the front of the interplanetary (IP) and Earth’s bow shock (BS). The frequencies of the power spectra break of fluctuations in the density of protons and α particles were calculated before and behind the ramp of the Earth’s bow shock and interplanetary shock. For the disturbed solar wind beyond the IP ramp, the frequency of the spectrum break of proton fluctuations turned out to be noticeably higher (on average 1.3 Hz) than in the undisturbed region (∼0.8–1.0 Hz), which is explained by an increase in both the velocity and the density of particles. In the case of α particles, the frequency of the spectrum break of fluctuations behind the IP front also increased by almost two times (from 0.7 to 0.12 Hz). It is shown that the average value of the frequency of the proton spectra break behind the ramps is less (0.6 Hz) than in the solar wind (1.0 Hz), due to lower velocity. For α particles, this effect was not statistically detected due to an increase in the density (0.11 Hz for both regions) in the case of BS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Matthaeus, W.H., Weygand, J.M., and Dasso, S., Ensemble space-time correlation of plasma turbulence in the solar wind, Phys. Rev. Lett., 2016, vol. 116, no. 24, p. 245101. https://doi.org/10.1103/PhysRevLett.116.245101

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Bruno, R. and Carbone, V., The solar wind as a turbulence laboratory, Living Reviews in Solar Physics, 2013, vol. 10, p. 2. https://doi.org/10.12942/lrsp-2013-2

    Article  ADS  Google Scholar 

  3. Kolmogorov, A.N., A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number, J. Fluid Mech., 1962, vol. 13, no. 1, pp. 82–85. https://doi.org/10.1017/S0022112062000518

    Article  ADS  MathSciNet  Google Scholar 

  4. Unti, T.W.J., Neugebauer, M., and Goldstein, B.E., Direct measurements of solar-wind fluctuations between 0.0048 and 13.3 Hz, Astrophys. J., 1973, vol. 180, pp. 591–598. https://doi.org/10.1086/151987

    Article  ADS  Google Scholar 

  5. Celnikier, L.M., Harvey, C.C., Jegou, R., et al., A determination of the electron density fluctuation spectrum in the solar wind, using the ISEE propagation experiment, Astron. Astrophys., 1983, vol. 126, no. 2, pp. 293–298. https://ui.adsabs.harvard.edu/abs/1983A&A…126..293C.

    ADS  Google Scholar 

  6. Zastenker, G.N., Safrankova, J., Nemecek, Z., et al., Fast measurements of parameters of the solar wind using the BMSW instrument, Cosmic Res., 2013, vol. 51, pp. 78–89. https://doi.org/10.1134/S0010952513020081

    Article  ADS  Google Scholar 

  7. Safrankova, J., Nemecek, Z., Prech, L., et al., Fast solar wind monitor (BMSW): Description and first results, Space Sci. Rev., 2013, vol. 175, nos. 1–4, pp. 165–182. https://doi.org/10.1007/s11214-013-9979-4

    Article  ADS  Google Scholar 

  8. Safrankova, J., Nemecek, Z., Nemec, F., et al., Solar wind density spectra around the ion spectral break, Astrophys. J., 2015, vol. 803, no. 2, p. 107. https://doi.org/10.1088/0004-637X/803/2/107

    Article  ADS  CAS  Google Scholar 

  9. Safrankova, J., Nemecek, Z., Nemec, F., et al., Power spectral density of fluctuations of bulk and thermal speeds in the solar wind, Astrophys. J., 2016, vol. 825, no. 2, p. 121. https://doi.org/10.3847/0004-637X/825/2/121

    Article  ADS  Google Scholar 

  10. Rakhmanova, L., Riazantseva, M., and Zastenker, G., Plasma fluctuations at the flanks of the Earth’s magnetosheath at ion kinetic scales, Ann. Geophys., 2016, vol. 34, pp. 1011–1018. https://doi.org/10.5194/angeo-34-1011-2016

    Article  ADS  CAS  Google Scholar 

  11. Riazantseva, M.O., Budaev, V.P., Rakhmanova, L.S., et al., Comparison of properties of small scale ion flux fluctuations in flank magnetosheath and in solar wind, Adv. Space Res., 2016, vol. 58, no. 2, pp. 166–174. https://doi.org/10.1016/j.asr.2015.12.022

    Article  ADS  Google Scholar 

  12. Rakhmanova, L.S., Riazantseva, M.O., Zastenker, G.N., et al., Large-scale solar wind phenomena affecting the turbulent cascade evolution behind the quasi-perpendicular bow shock, Universe, 2022, vol. 8, no. 12, p. 611. https://doi.org/10.3390/universe8120611

    Article  ADS  Google Scholar 

  13. Rakhmanova, L., Riazantseva, M., Zastenker, G., et al., Role of the variable solar wind in the dynamics of small-scale magnetosheath structures, Front. Astron. Space Sci., 2023, vol. 10. https://doi.org/10.3389/fspas.2023.1121230

  14. Ogilvie, K.W. and Wilkerson, T.D., Helium abundance in the solar wind, Solar Phys., 1969, vol. 8, no. 2, pp. 435–449. https://doi.org/10.1007/BF00155391

    Article  ADS  CAS  Google Scholar 

  15. Formisano, V., Palmiotto, F., and Moreno, G., α-Particle observations in the solar wind, Sol. Phys., 1970, vol. 15, no. 2, pp. 479–498. https://doi.org/10.1007/BF00151853

    Article  ADS  Google Scholar 

  16. Borovsky, J.E., Flux-tube texture of the solar wind: Strands of the magnetic carpet at 1 AU?, J. Geophys. Res., 2008, vol. 113, no. A8, p. 8110. https://doi.org/10.1029/2007JA012684

    Article  CAS  Google Scholar 

  17. Kasper, J.C., Stevens, M.L., Korreck, K.E., et al., Evolution of the relationships between helium abundance, minor ion charge state, and solar wind velocity over the solar cycle, Astrophys. J., 2012, vol. 745, no. 2, p. 162. https://doi.org/10.1088/0004-637X/745/2/162

    Article  ADS  CAS  Google Scholar 

  18. Yermolaev, Y.I., Lodkina, I.G., Yermolaev, M.Y., et al., Dynamics of large-scale solar-wind streams obtained by the double superposed epoch analysis: 4. Helium abundance, J. Geophys. Res.: Space Phys., 2020, vol. 125, p. e2020JA027878. https://doi.org/10.1029/2020JA027878

  19. Leamon, R.J., Matthaeus, W.H., Smith, C.W., et al., MHD-driven kinetic dissipation in the solar wind and corona, Astrophys. J., 2000, vol. 537, no. 2, pp. 1054–1062. https://doi.org/10.1086/309059

    Article  ADS  CAS  Google Scholar 

  20. Smith, C.W., Mullan, D.J., Ness, N.F., et al., Day the solar wind almost disappeared: Magnetic field fluctuations, wave refraction and dissipation, Geophys. Res., 2001, vol. 106, no. Iss. A9, pp. 18625–18634. https://doi.org/10.1029/2001JA000022

  21. Howes, G.G., Cowley, S.C., Dorland, W., et al., A model of turbulence in magnetized plasmas: Implications for the dissipation range in the solar wind, Geophys. Res., 2008, vol. 113, p. A05103. https://doi.org/10.48550/arXiv.0707.3147

    Article  ADS  Google Scholar 

  22. Schekochihin, A.A., Cowley, S.C., Dorland, W., et al., Astrophysical gyrokinetics: Kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas, Astrophys. J. Suppl. Ser., 2009, vol. 182, no. 1, pp. 310–377. https://doi.org/10.1088/0067-0049/182/1/310

    Article  ADS  Google Scholar 

  23. Sapunova, O.V., Borodkova, N.L., Zastenker, G.N., et al., Dynamics of He++ ions at interplanetary and Earth’s bow shocks, Universe, 2022, vol. 8, no. 10, p. 516. https://doi.org/10.3390/universe8100516

    Article  ADS  CAS  Google Scholar 

  24. Rakhmanova, L.S., Riazantseva, M.O., Zastenker, G.N., et al., Effect of the magnetopause and bow shock on characteristics of plasma turbulence in the Earth’s magnetosheath, Geomagn. Aeron. (Engl. Transl.), 2018, vol. 58, no. 6, pp. 718–727. https://doi.org/10.1134/S0016793218060129

Download references

Funding

The work was supported by the Russian Science Foundation, grant no. 22-12-00227.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Sapunova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by S. Avodkova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sapunova, O.V., Borodkova, N.L., Yermolaev, Y.I. et al. Spectra of Fluctuations of Solar Wind Plasma Parameters near a Shock Wave. Cosmic Res 62, 1–9 (2024). https://doi.org/10.1134/S0010952523700843

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952523700843

Navigation