Skip to main content
Log in

β-Tubulin of Fusarium as a Potential Target for Realization of Antifungal Activity of Ivermectin

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The analysis of the effect of ivermectin on phytopathogenic strains of Fusarium graminearum (F‑55644, F-55748) and Fusarium oxysporum f. sp. lycopersici (F-52897, F-55547) was carried out; as a result, its concentrations were established at which a fungistatic effect on the growth of colonies of the specified strains was observed (2 and 3 mg/mL). It was found that F. oxysporum strains were more susceptible in general to ivermectin than F. graminearum strains. Since it is known that ivermectin is able to interact with β-tubulin (causing a stabilization of microtubules), to explain the obtained results, a 3-dimensional model of the complex of this compound with Fusarium β-tubulin was developed and ivermectin-induced changes in the conformation of β-tubulin were determined, including, particularly, the stabilization and spiralization of the M‑loop of the β-tubulin molecule. This structural element of β-tubulin plays an important role in the lateral contacts between tubulin subunits of adjacent protofilaments within the microtubule. Since the M-loop stabilization reflects a very important feature of microtubule stabilizing agents' binding to the taxane site of β-tubulin, it can be supposed, that ivermectin possesses the same effect on Fusarium microtubules. The results obtained allow for considering ivermectin or its derivatives as potential compounds with fungicidal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Abraham, M.J., Murtola, T., Schulz, R., et al., GROMACS: High performance molecular simulations through multi–level parallelism from laptops to supercomputers, SoftwareX, 2015, vol. 1, pp. 19–25. https://doi.org/10.1016/j.softx.2015.06.001

    Article  ADS  Google Scholar 

  2. Ashraf, S., Beech, R.N., Hancock, M.A., and Prichard, R.K., Ivermectin binds to Haemonchus contortus tubulins and promotes stability of microtubules, Int. J. Parasitol., 2015, vol. 45, nos. 9–10, pp. 647–654. https://doi.org/10.1016/j.ijpara.2015.03.010

    Article  CAS  PubMed  Google Scholar 

  3. Balouiri, M., Sadiki, M., and Ibnsouda, S.K., Methods for in vitro evaluating antimicrobial activity: A review, J. Pharm. Anal., 2016, vol. 6, no. 2, pp. 71–79. https://doi.org/10.1016/j.jpha.2015.11.005

    Article  PubMed  Google Scholar 

  4. Blume, Ya., Yemets, A., Sheremet Ya., et al., Exposure of beta–tubulin regions defined by antibodies on a Arabidopsis thaliana microtubule protofilament model and in the cells, BMC Plant Biol., 2010, vol. 10, p. 29. https://doi.org/10.1186/1471-2229-10-29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Breviario, D., Gianì, S., and Morello, L., Multiple tubulins: evolutionary aspects and biological implications, Plant J., 2013, vol. 75, no. 2, pp. 202–218. https://doi.org/10.1111/tpj.12243

    Article  CAS  PubMed  Google Scholar 

  6. Crump, A., Ivermectin: enigmatic multifaceted ‘wonder’ drug continues to surprise and exceed expectations, J. Antibiot., 2017, vol. 70, no. 5, pp. 495–505. https://doi.org/10.1038/ja.2017.11

    Article  CAS  Google Scholar 

  7. Daura, X., Gademann, K., Jaun, B., et al., Peptide folding: when simulation meets experiment, Angew. Chem., Int. Ed., 1999, vol. 38, nos. 1–2, pp. 236–240. https://doi.org/10.1002/(SICI)1521-3773(19990115)38:1/2%3C236::AIDANIE236%3E3.0.CO;2-M

    Article  CAS  Google Scholar 

  8. Debs, G.E., Cha, M., Liu, X., et al., Dynamic and asymmetric fluctuations in the microtubule wall captured by high–resolution cryoelectron microscopy, Proc. Natl. Acad. Sci. U. S. A., 2020, vol. 117, no. 29, pp. 16976–16984. https://doi.org/10.1073/pnas.2001546117

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huang, J. and MacKerell, A.D., Jr., CHARMM36 allatom additive protein force field: Validation based on comparison to NMR data, J. Comput. Chem., 2013, vol. 34, no. 25, pp. 2135–2145. https://doi.org/10.1016/j.ijfoodmicro.2017.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Humphrey, W., Dalke, A., and Schulten, K., VMD: Visual molecular dynamics, J. Mol. Graphics, 1996, vol. 14, no. 1, pp. 33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  Google Scholar 

  11. Hunter, B., Benoit, M.P.M.H., Asenjo, A.B., et al., Kinesin-8-specific loop-2 controls the dual activities of the motor domain according to tubulin protofilament shape, Nat. Commun., 2022, vol. 13, no. 1, p. 4198. https://doi.org/10.1038/s41467-022-31794-3

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jones, G., Willett, P., Glen, R.C., et al., Development and validation of a genetic algorithm for flexible docking, J. Mol. Biol., 1997, vol. 267, no. 3, pp. 727–748. https://doi.org/10.1006/jmbi.1996.0897

    Article  CAS  PubMed  Google Scholar 

  13. Jumper, J., Evans, R., Pritzel, A., et al., Highly accurate protein structure prediction with AlphaFold, Nature, 2021, vol. 596, no. 7873, pp. 583–589. https://doi.org/10.1038/s41586-021-03819-2

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Karlsson, I., Friberg, H., Kolseth, A.K., et al., Agricultural factors affecting Fusarium communities in wheat kernels, Int. J. Food Microbiol., 2017, vol. 252, pp. 53–60. https://doi.org/10.1073/pnas.2001546117

    Article  CAS  PubMed  Google Scholar 

  15. Karpov, P.A., Brytsun, V.M., Rayevsky, A.V., et al., High-throughput screening of new antimitotic compounds based on CSLabGrid virtual organization, Sci. Innovat., 2015, vol. 11, no. 1, pp. 85–93. https://doi.org/10.15407/scin11.01.092

    Article  Google Scholar 

  16. Korb, O., Stützle, T., and Exner, T.E., Empirical scoring functions for advanced protein–ligand docking with PLANTS, J. Chem. Inf. Model., 2009, vol. 49, no. 1, pp. 84–96. https://doi.org/10.1021/ci800298z

    Article  CAS  PubMed  Google Scholar 

  17. Kustovskiy, Y.O., Buziashvili, A.Y., and Yemets, A.I., Research of ivermectin influence on Fusarium graminearum and F. oxysporum, in Faktory eksperimental’noi evolutsii organizmov (Factors in the Experimental Evolution of Organisms), 2022, vol. 30, pp. 91–95. https://doi.org/10.7124/feeo.v30.1467

  18. Löscher, W., Is the antiparasitic drug ivermectin a suitable candidate for the treatment of epilepsy?, Epilepsia., 2023, vol. 64, no. 3, pp. 553–566. https://doi.org/10.1111/epi.17511

    Article  CAS  PubMed  Google Scholar 

  19. Lykholat, Y.V., Rabokon, A.M., Blume, R.Ya., et al., Characterization of β–tubulin genes in Prunus persica and Prunus dulcis for fingerprinting of their interspecific hybrids, Cytol. Genet., 2022, vol. 56, no. 6, pp. 481–493. https://doi.org/10.3103/S009545272206007X

    Article  Google Scholar 

  20. Martin, R.J., Robertson, A.P., and Choudhary, S., Ivermectin: an anthelmintic, an insecticide, and much more, Trends Parasitol., 2021, vol. 37, no. 1, pp. 48–64. https://doi.org/10.1016/j.pt.2020.10.005

    Article  CAS  PubMed  Google Scholar 

  21. Mittal, N. and Mittal, R., Repurposing old molecules for new indications: Defining pillars of success from lessons in the past, Eur. J. Pharmacol., 2021, vol. 912, p. 174569. https://doi.org/10.1016/j.ejphar.2021.174569

    Article  CAS  PubMed  Google Scholar 

  22. Momany, M. and Talbot, N.J., Septins focus cellular growth for host infection by pathogenic fungi, Front. Cell Dev. Biol., 2017, vol. 5, p. 33. https://doi.org/10.3389/fcell.2017.00033

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mooij, W.T. and Verdonk, M.L., General and targeted statistical potentials for protein–ligand interactions, Proteins, 2005, vol. 61, no. 2, pp. 272–287. https://doi.org/10.1002/prot.20588

    Article  CAS  PubMed  Google Scholar 

  24. Mühlethaler, T., Gioia, D., Prota, A.E., et al., Comprehensive analysis of binding sites in tubulin, Angew. Chem., Int. Ed., 2021, vol. 60, no. 24, pp. 13331–13342. https://doi.org/10.1002/anie.202100273

    Article  CAS  Google Scholar 

  25. Sampaio, A.M., Araújo, Sd.S., Rubiales, D., and Vaz Patto, M.C., Fusarium wilt management in legume crops, Agronomy, 2020, vol. 10, no. 8, p. 1073. https://doi.org/10.3390/agronomy10081073

    Article  CAS  Google Scholar 

  26. Schneider, N., Lange, G., Hindle, S., et al., A consistent description of HYdrogen bond and DEhydration energies in protein–ligand complexes: methods behind the HYDE scoring function, J. Comput.-Aided Mol. Des., 2013, vol. 27, no. 1, pp. 15–29. https://doi.org/10.1007/s10822-012-9626-2

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Volkamer, A., Griewel, A., Grombacher, T., and Rarey, M., Analyzing the topology of active sites: on the prediction of pockets and subpockets, J. Chem. Inf. Model., 2010, vol. 50, no. 11, pp. 2041–2052. https://doi.org/10.1021/ci100241y

    Article  CAS  PubMed  Google Scholar 

  28. Volkamer, A., Kuhn, D., Rippmann, F., and Rarey, M., DoGSiteScorer: a web server for automatic binding site prediction, analysis and druggability assessment, Bioinformatics, 2012, vol. 28, no.15, pp. 2074–2075. https://doi.org/10.1093/bioinformatics/bts310

    Article  CAS  PubMed  Google Scholar 

  29. Westphal, K.R., Heidelbach, S., Zeuner, E.J., et al., The effects of different potato dextrose agar media on secondary metabolite production in Fusarium, Int. J. Food Microbiol., 2021, vol. 347, p. 109171. https://doi.org/10.1016/j.ijfoodmicro.2021.109171

    Article  CAS  PubMed  Google Scholar 

  30. Xiao, Q., Xue, T., Shuai, W., et al., High-resolution X-ray structure of three microtubule-stabilizing agents in complex with tubulin provide a rationale for drug design, Biochem. Biophys. Res. Commun., 2021, vol. 534, pp. 330–336. https://doi.org/10.1016/j.bbrc.2020.11.082

    Article  CAS  PubMed  Google Scholar 

  31. Zoete, V., Cuendet, M.A., Grosdidier, A., and Michielin, O., SwissParam: A fast force field generation tool for small organic molecules, J. Comput. Chem., 2011, vol. 32, no. 11, pp. 2359–2368. https://doi.org/10.1002/jcc.21816

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was carried out within the budget theme (code # 6541230) and was financially supported by the National Academy of Sciences of Ukraine.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. O. Kustovskiy or A. I. Yemets.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kustovskiy, Y.O., Buziashvili, A.Y., Ozheredov, S.P. et al. β-Tubulin of Fusarium as a Potential Target for Realization of Antifungal Activity of Ivermectin. Cytol. Genet. 58, 1–10 (2024). https://doi.org/10.3103/S009545272401002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S009545272401002X

Navigation