Skip to main content
Log in

TAP2 Effect on Min-Pig Stromal Vascular Fraction Cell Gene Expression

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

We have hypothesized that the TAP2 gene is associated with lipid metabolism. Here, 10 Min-pig tissues were collected to detect the expression of TAP2 in different tissues. We obtained dorsal subcutaneous structural vascular fraction (SVF) cells from the Min-pig’s back adipose tissue and induced SVF cells into mature adipocytes. By overexpression and interference, the effect of TAP2 on fat deposition in Min-pig SVF cells was studied. Recombinant human insulin, dexamethasone, indomethacin, 3-isobutyl-1-methylxanthine, triiodothyronine, and rosiglitazone could successfully induce SVF cells into mature adipocytes, and the induction efficiency was above 50%. The tissue expression profile showed that TAP2 was expressed in different tissues, and the highest expression was found in back fat, spleen, and back muscle. Overexpression of the TAP2 gene in SVF cells could significantly increase the expression of adipose differentiation-related genes. The expression of TAP2 in SVF cells was reduced to 0.6 times after transfection of the TAP2 gene interference fragment. The adipogenic transcription factor gene C/EBPα, fatty acid synthase gene FSA, and adipocyte directional differentiation factor ADD1 were downregulated, while the expression of lipolysis-related gene LPL was inhibited. In conclusion, TAP2 expression can promote the deposition of subcutaneous fat on Min-pig’s back adipose tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Albuquerque, A., Ovilo, C., Nunez, Y., et al., Transcriptomic profiling of skeletal muscle reveals candidate genes influencing muscle growth and associated lipid composition in Portuguese local pig breeds, Animals (Basel), 2021, vol. 11, no. 5, p. 1423. https://doi.org/10.3390/ani11051423

    Article  PubMed  PubMed Central  Google Scholar 

  2. Al-Ghadban, S., Diaz, Z.T., Singer, H.J., et al., Increase in leptin and PPAR-γ gene expression in lipedema adipocytes differentiated in vitro from adipose-derived stem cells, Cells, 2020, vol. 9, no. 2, p. 430. https://doi.org/10.3390/cells9020430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alharthi, A.M., Banaganapalli, B., Hassan, S.M., et al., Complex inheritance of rare missense variants in PAK2, TAP2, and PLCL1 genes in a consanguineous Arab family with multiple autoimmune diseases including celiac disease, Front. Pediatr., 2022, vol. 10, p. 895298. https://doi.org/10.3389/fped.2022.895298

    Article  PubMed  PubMed Central  Google Scholar 

  4. Barr, V.A., Balagopalan, L., Barda-Saad, M., et al., T-cell antigen receptor-induced signaling complexes: internalization via a cholesterol-dependent endocytic pathway, Traffic, 2006, vol. 7, no. 9, pp. 1143–1162. https://doi.org/10.1111/j.1600-0854.2006.00464.x

    Article  CAS  PubMed  Google Scholar 

  5. Belleville-Rolland, T., Leuci, A., Mansour, A., et al., Role of membrane lipid rafts in MRP4 (ABCC4)-dependent regulation of the cAMP pathway in blood platelets, Thromb. Haemostasis, 2021. https://doi.org/10.1055/a-1481-2663

  6. Catani, M.V., Tullio, V., Maccarrone, M., et al., DNA-protein-interaction (DPI)-ELISA assay for PPAR- γ receptor binding, Methods Mol. Biol., 2023, vol. 2576, pp. 133–143. https://doi.org/10.1007/978-1-0716-2728-0_10

    Article  CAS  PubMed  Google Scholar 

  7. Chen, Z., Torrens, J.I., Anand, A., et al., Krox20 stimulates adipogenesis via C/EBPβ-dependent and -independent mechanisms, Cell Metab., 2005, vol. 1, no. 2, pp. 93–106. https://doi.org/10.1016/j.cmet.2004.12.009

    Article  CAS  PubMed  Google Scholar 

  8. Chen, J., Zhang, H., Gao, H., et al., Effects of dietary supplementation of alpha-ketoglutarate in a low-protein diet on fatty acid composition and lipid metabolism related gene expression in muscles of growing pigs, Animals (Basel), 2019, vol. 9, no. 10. https://doi.org/10.3390/ani9100838

  9. Cimmino, I., Oriente, F., D’Esposito, V., et al., Low-dose Bisphenol-A regulates inflammatory cytokines through GPR30 in mammary adipose cells, J. Mol. Endocrinol., 2019, vol. 63, no. 4, pp. 273–283. https://doi.org/10.1530/JME-18-0265

    Article  CAS  PubMed  Google Scholar 

  10. Darazam, I.A., Hakamifard, A., Momenilandi, M., et al., Delayed diagnosis of chronic necrotizing granulomatous skin lesions due to TAP2 deficiency, J. Clin. Immunol., 2023, vol. 43, no. 1, pp. 217–228. https://doi.org/10.1007/s10875-022-01374-7

    Article  CAS  PubMed  Google Scholar 

  11. El-Assaad, A., Dawy, Z., and Nemer, G., Electrostatic study of Alanine mutational effects on transcription: application to GATA-3: DNA interaction complex, 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015, vol. 2015, pp. 4005–4008. https://doi.org/10.1109/EMBC.2015.7319272

  12. Farmer, S.R., Transcriptional control of adipocyte formation, Cell Metab., 2006, vol. 4, no. 4, pp. 263–273. https://doi.org/10.1016/j.cmet.2006.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Feng, Y., An, Z., Chen, H., et al., Ulva prolifera extract alleviates intestinal oxidative stress via Nrf2 signaling in weaned piglets challenged with hydrogen peroxide, Front. Immunol., 2020, vol. 11, p. 599735. https://doi.org/10.3389/fimmu.2020.599735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Flori, L., Rogel-Gaillard, C., Cochet, M., et al., Transcriptomic analysis of the dialogue between Pseudorabies virus and porcine epithelial cells during infection, BMC Genomics, 2008, vol. 9, p. 123. https://doi.org/10.1186/1471-2164-9-123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gajate, C. and Mollinedo, F., Lipid raft isolation by sucrose gradient centrifugation and visualization of raft-located proteins by fluorescence microscopy: the use of combined techniques to assess Fas/CD95 location in rafts during apoptosis triggering, in Methods in Molecular Biology, 2021, vol. 2187, pp. 147–186. https://doi.org/10.1007/978-1-0716-0814-2_9

    Article  CAS  PubMed  Google Scholar 

  16. Garcia-Borges, C.N., Phanavanh, B., and Crew, M.D., Characterization of porcine TAP genes: alternative splicing of TAP1, Immunogenetics, 2006, vol. 58, nos. 5–6, pp. 374–382. https://doi.org/10.1007/s00251-006-0103-8

    Article  CAS  PubMed  Google Scholar 

  17. Han, S.L., Liu, Y., Limbu, S.M., et al., The reduction of lipid-sourced energy production caused by ATGL inhibition cannot be compensated by activation of HSL, autophagy, and utilization of other nutrients in fish, Fish Physiol. Biochem., 2021, vol. 47, no. 1, pp. 173–188. https://doi.org/10.1007/s10695-020-00904-7

    Article  CAS  PubMed  Google Scholar 

  18. Huang, W., Zhang, X., Li, A., et al., Genome-wide analysis of mRNAs and lncRNAs of intramuscular fat related to lipid metabolism in two pig breeds, Cell Physiol. Biochem., 2018, vol. 50, no, 6, pp. 2406–2422. https://doi.org/10.1159/000495101

    Article  CAS  PubMed  Google Scholar 

  19. Jiang, M.J., Li, L., Huang, W.F., et al., Rubus chingii var. suavissimus alleviates high-fat diet-induced lipid metabolism disorder via modulation of the PPARs/SREBP pathway in Syrian golden hamsters, J. Nat. Med., 2021, vol. 75, pp. 884–892. https://doi.org/10.1007/s11418-021-01536-8

    Article  CAS  PubMed  Google Scholar 

  20. Lee, S.H., Lee, S.H., Park, H.B., et al., Identification of key adipogenic transcription factors for the pork belly parameters via the association weight matrix, Meat Sci., 2023, vol. 195, p. 109015. https://doi.org/10.1016/j.meatsci.2022.109015

    Article  CAS  PubMed  Google Scholar 

  21. Li, D., Zhang, F., Zhang X., et al., Distinct functions of PPARγ isoforms in regulating adipocyte plasticity, Biochem. Biophys. Res. Commun., 2016, vol. 481, nos. 1–2, pp. 132–138. https://doi.org/10.1016/j.bbrc.2016.10.152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lin, J., Cao, C., Tao, C., et al., Cold adaptation in pigs depends on UCP3 in beige adipocytes, J. Mol. Cell Biol., 2017, vol. 9, no. 5, p. 364–375. https://doi.org/10.1093/jmcb/mjx018

    Article  CAS  PubMed  Google Scholar 

  23. Liu, Y., Yang, X., Jing, X., et al., Transcriptomics analysis on excellent meat quality traits of skeletal muscles of the Chinese indigenous min pig compared with the large white breed, Int. J. Mol. Sci., 2018, vol. 19, no. 1, p. 21. https://doi.org/10.3390/ijms19010021

    Article  CAS  Google Scholar 

  24. Liu, L., Cao, P., Zhang, L., et al., Comparisons of adipogenesis-and lipid metabolism-related gene expression levels in muscle, adipose tissue and liver from Wagyu-cross and Holstein steers, PLoS One, 2021, vol. 16, no. 2, p. e0247559. https://doi.org/10.1371/journal.pone.0247559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ma, W., Lehner, P.J., Cresswell, P., et al., Interferon-γ rapidly increases peptide transporter (TAP) subunit expression and peptide transport capacity in endothelial cells, J. Biol. Chem., 1997, vol. 272, no. 26, pp. 16585–16590. https://doi.org/10.1074/jbc.272.26.16585

    Article  CAS  PubMed  Google Scholar 

  26. Nagy, N., Vanky, F., and Klein, E., Tumor surveillance: expression of the transporter associated with antigen processing (TAP-1) in ex-vivo human tumor samples and its elevation by in vitro treatment with IFN-γ and TNF-α, Immunol. Lett., 1998, vol. 64, nos. 2–3, pp. 153–160. https://doi.org/10.1016/s0165-2478(98)00104-7

    Article  CAS  PubMed  Google Scholar 

  27. Nian, H.Y., Zhang, R.X., Ding, S.S., et al., Emotional responses of piglets under long-term exposure to negative and positive auditory stimuli, Domest. Anim. Endocrinol., 2023, vol. 82, p. 106771. https://doi.org/10.1016/j.domaniend.2022.106771

    Article  PubMed  Google Scholar 

  28. Pan, Y., Jing, J., Qiao, L., et al., MiRNA-seq reveals that miR-124-3p inhibits adipogenic differentiation of the stromal vascular fraction insheep via targeting C/EBPα, Domest. Anim. Endocrinol., 2018, vol. 65, pp. 17–23. https://doi.org/10.1016/j.domaniend.2018.05.002

    Article  CAS  PubMed  Google Scholar 

  29. Pang, T., Tang, Q., Wei, J., et al., Construction of a novel immune-related prognostic-predicting model of gastric cancer, Gene, 2022, vol. 852, p. 147032. https://doi.org/10.1016/j.gene.2022.147032

    Article  CAS  PubMed  Google Scholar 

  30. Park, W.Y., Park, J., Lee, S., et al., PEX13 is required for thermogenesis of white adipose tissue in cold-exposed mice, Biochim. Biophys. Acta, Mol. Cell Biol. Lipids, 2022, vol. 1867, no. 1, p. 159046. https://doi.org/10.1016/j.bbalip.2021.159046

    Article  CAS  Google Scholar 

  31. Raghavan, M., Del Cid, N., Rizvi, S.M., et al., MHC class I assembly: out and about, Trends Immunol., 2008, vol. 29, no.9, pp. 436–443. https://doi.org/10.1016/j.it.2008.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rosen, E.D., Hsu, C.H., Wang, X., et al., C/EBPα induces adipogenesis through PPARγ: a unified pathway, Genes Dev., 2002, vol. 16, no. 1, pp. 22–26. https://doi.org/10.1101/gad.948702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Roth, D., Benz, J., Grether, U., et al., Homogeneous Time-Resolved Fluorescence Resonance Energy Transfer (TR-FRET) cofactor recruitment assay for PPARα and PPARγ, in Methods in Molecular Biology, 2023, vol. 2576, pp. 155–169. https://doi.org/10.1007/978-1-0716-2728-0_12

    Article  CAS  PubMed  Google Scholar 

  34. Salazar-Onfray, F., Charo, J., Petersson, M., et al., Down-regulation of the expression and function of the transporter associated with antigen processing in murine tumor cell lines expressing IL-10, J. Immunol., 1997, vol. 159, no. 7, pp. 3195–3202.

    Article  CAS  PubMed  Google Scholar 

  35. Sidhom, E.H., Kim, C., Kost-Alimova, M., et al., Targeting a Braf/Mapk pathway rescues podocyte lipid peroxidation in CoQ-deficiency kidney disease, J. Clin. Invest., 2021, vol. 131, no. 5. https://doi.org/10.1172/JCI141380

  36. Sun, N., Liu, D., Chen, H., et al., Localization, expression change in PRRSV infection and association analysis of the porcine TAP1 gene, Int. J. Biol. Sci., 2012, vol. 8, no. 1, pp. 49–58. https://doi.org/10.7150/ijbs.8.49

    Article  CAS  PubMed  Google Scholar 

  37. Suzuki, K., Yanagi, M., Mori-Aoki, A., et al., Transfection of single-stranded hepatitis A virus RNA activates MHC class I pathway, Clin. Exp. Immunol., 2002, vol. 127, no 2, pp. 234–242. https://doi.org/10.1046/j.1365-2249.2002.01767.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tanaka, T., Yoshida, N., Kishimoto, T., et al., Defective adipocyte differentiation in mice lacking the C/EBPβ and/or C/EBPδ gene, EMBO J., 1997, vol. 16, no. 24, pp. 7432–7443. https://doi.org/10.1093/emboj/16.24.7432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tang, S., Xie, J., Wu, W., et al., High ammonia exposure regulates lipid metabolism in the pig skeletal muscle via mTOR pathway, Sci. Total Environ., 2020, vol. 740, p. 139917. https://doi.org/10.1016/j.scitotenv.2020.139917

    Article  CAS  PubMed  ADS  Google Scholar 

  40. Vaske, D.A., Ruohonen-Lehto, M.K., Larson, R.G., et al., Rapid communication: restriction fragment length polymorphisms at the porcine transporter associated with antigen processing 1 (TAP1) locus, J. Anim. Sci., 1994, vol. 72, no. 1, p. 255. https://doi.org/10.2527/1994.721255x

    Article  CAS  PubMed  Google Scholar 

  41. Wang, J., Hua, L., Chen, J., et al., Identification and characterization of long non-coding RNAs in subcutaneous adipose tissue from castrated and intact full-sib pair Huainan male pigs, BMC Genomics, 2017, vol. 18, no. 1, p. 542. https://doi.org/10.1186/s12864-017-3907-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, Q., Song, Z., Yang, J., et al., Transcriptomic analysis of the innate immune signatures of a SARS-CoV-2 protein subunit vaccine ZF2001 and an mRNA vaccine RRV, Emerging Microbes Infect., 2022, vol. 11, no. 1, pp. 1145–1153. https://doi.org/10.1080/22221751.2022.2059404

    Article  CAS  Google Scholar 

  43. Xue, P., Hou, Y., Zuo, Z., et al., Long isoforms of NRF1 negatively regulate adipogenesis via suppression of PPARγ expression, Redox Biol., 2020, vol. 30, p. 101414. https://doi.org/10.1016/j.redox.2019.101414

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, M., Shao, Y., Gao, B., et al., Erchen decoction mitigates lipid metabolism disorder by the regulation of PPARγ and LPL gene in a high-fat diet C57BL/6 mice model, Evidence-Based Complementary Altern. Med., 2020, vol. 2020, p. 9102475. https://doi.org/10.1155/2020/9102475

    Article  Google Scholar 

  45. Zhang, Y., Wu, H., He, R., et al., Dickkopf-2 knockdown protects against classic macrophage polarization and lipid loading by activation of Wnt/β-catenin signaling, J. Cardiol., 2021. https://doi.org/10.1016/j.jjcc.2021.04.010

  46. Zhu, K., Wang, J., Zhu, J., et al., p53 induces TAP1 and enhances the transport of MHC class I peptides, Oncogene, 1999, vol. 18, no. 54, pp. 7740–7747. https://doi.org/10.1038/sj.onc.1203235

    Article  CAS  PubMed  Google Scholar 

  47. Zou, C., Li, S., Deng, L., et al., Transcriptome analysis reveals long intergenic noncoding RNAs contributed to growthand meat quality differences between Yorkshire and Wannanhua Pig, Genes (Basel), 2017, vol. 8, no. 8. https://doi.org/10.3390/genes8080203

  48. Zou, C., Li, L., Cheng, X., et al., Identification and functional analysis of long intergenic non-coding RNAs underlying intramuscular fat content in pigs, Front. Genet., 2018, vol. 9, p. 102. https://doi.org/10.3389/fgene.2018.00102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zubiria, M.G., Giordano, A.P., Gambaro, S.E., et al., Dexamethasone primes adipocyte precursor cells for differentiation by enhancing adipogenic competency, Life Sci., 2020, vol. 261, p. 118363. https://doi.org/10.1016/j.lfs.2020.118363

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Funding

This work was supported by Heilongjiang Postdoctoral Financial Assistance (LBH-Z18263), China Agriculture Research System of MOF and MARA (CARS-36), Heilongjiang Provincial Scientific Research Business Fund Project (CZKYF2021-2-C025), and the National Natural Science Foundation of China (31872980, U20A2052).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Di Liu or Zhenhua Guo.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

The study was approved by the Committee for Animal Welfare of the Institute of Animal Husbandry of HAAS, Heilongjiang, China, no. NKY-20140506, Ministry of Science and Technology (Committee approval date May 4, 2020. Approval No. 20200504MZ).

CONFLICT OF INTEREST

The authors of this work declare that they have no conflict of interest to report.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Extended Data Fig. 1: Graphical abstract.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Liu, D., Ma, H. et al. TAP2 Effect on Min-Pig Stromal Vascular Fraction Cell Gene Expression. Cytol. Genet. 58, 60–69 (2024). https://doi.org/10.3103/S0095452724010080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452724010080

Navigation