Skip to main content
Log in

Effect of the Nitrogen Source on the Synthesis of Secondary Metabolites by Suspension Culture of Medicinal Asparagus Asparagus officinalis L.

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Medicinal asparagus contains unique compounds that can stop the development of cancerous tumors and even destroy cancer cells. However, there is still insufficient information about the features of the biosynthesis of these compounds and the conditions for their production. In this paper, the influence of an inorganic nitrogen source on the growth of a suspended culture of medicinal asparagus, the accumulation of phenolic compounds in the culture and culture liquid, and the synthesis of saponins is studied. A callus and suspension culture of medicinal asparagus Asparagus officinalis L. were obtained under in vitro conditions. For further research, concentrations of growth regulators 1 mg/L kinetin and 1.5 mg/L 2,4-D were selected. The fastest growth of the suspension culture was established on the medium with a concentration of potassium nitrate of 1900 mg/L and ammonium sulfate of 250 mg/L. Individual explants demonstrated spontaneous differentiation of callus tissue that affected the increase in callus mass and the ratio of the concentration of exophenols to the total mass of the explant. The highest concentrations of endo- and exophenols were obtained on a medium without ammonium nitrogen sources. A positive effect of the medium with a concentration of ammonium sulfate of 500 mg/L on the synthesis of the main steroidal saponins of Asparagus officinalis L. was determined. As a result of the study, a modified MS medium was developed that promotes the accumulation of steroid saponins in a suspension culture of medicinal asparagus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Ahmad, N., Rab, A., and Ahmad, N., Differential pH-induced biosynthesis of steviol glycosides and biochemical parameters in submerge root cultures of Stevia rebaudiana (Bert.), Sugar Tech., 2018, vol. 20, pp. 734–744. https://doi.org/10.1007/s12355-018-0589-z

    Article  CAS  Google Scholar 

  2. Asim, M., Ullah, Z., Xu, F., An, L., Aluko, O.O., Wang, Q., and Liu, H., Nitrate signaling, functions, and regulation of root system architecture: insights from Arabidopsis thaliana, Genes, 2020, vol. 11, no. 6, p. 633. https://doi.org/10.3390/genes11060633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Długosz, M., Markowski, M., and Pączkowski, C., Source of nitrogen as a factor limiting saponin production by hairy root and suspension cultures of Calendula officinalis L., Acta Physiol. Plant., 2018, vol. 40, p. 35. https://doi.org/10.1007/s11738-018-2610-2

    Article  CAS  Google Scholar 

  4. Döll, S., Djalali Farahani-Kofoet, R., Zrenner, R., Henze, A., and Witzel, K., Tissue-specific signatures of metabolites and proteins in asparagus roots and exudates, Hortic. Res., 2021, vol. 8, p. 86. https://doi.org/10.1038/s41438-021-00510-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Donaldson, L., Radotić, K., Kalauzi, A., Djikanović, D., and Jeremić, M., Quantification of compression wood severity in tracheids of Pinus radiata D. Don using confocal fluorescence imaging and spectral deconvolution, J. Struct. Biol., 2010, vol. 169, no. 1, pp. 106–115. https://doi.org/10.1016/j.jsb.2009.09.006

    Article  PubMed  Google Scholar 

  6. Encina, C.L. and Regalado, J.J., Aspects of in vitro plant tissue culture and breeding of asparagus: A review, Horticulturae, 2022, vol. 8, no. 5, p. 439. https://doi.org/10.3390/horticulturae8050439

  7. Fritz, C., Palacios-Rojas, N., Feil, R., and Stitt, M., Regulation of secondary metabolism by the carbonnitrogen status in tobacco: nitrate inhibits large sectors of phenylpropanoid metabolism, Plant J., 2006, vol. 46, no. 4, pp. 533–548. https://doi.org/10.1111/j.1365-313X.2006.02715.x

    Article  CAS  PubMed  Google Scholar 

  8. Guo, Q., Wang, N., Liu, H., Li, Z., Lu, L., and Wang, C., The bioactive compounds and biological functions of Asparagus officinalis L. – A review, J. Funct. Foods, 2020, vol. 65, p. 103727. https://doi.org/10.1016/j.jff.2019.10372

    Article  Google Scholar 

  9. Hildah Mfengwana, P.M.A. and Sitheni Mashele, S., Medicinal Properties of Selected Asparagus Species: A Review, IntechOpen, 2020. https://doi.org/10.5772/intechopen.87048

    Book  Google Scholar 

  10. Huang, H., Yao, Q., Xia, E., and Gao, L., Metabolomics and transcriptomics analyses reveal nitrogen influences on the accumulation of flavonoids and amino acids in young shoots of tea plant (Camellia sinensis L.) associated with tea flavor, J. Agric. Food Chem., 2018, vol. 66, no. 37, pp. 9828–9838. https://doi.org/10.1021/acs.jafc.8b01995

    Article  CAS  PubMed  Google Scholar 

  11. Jaramillo, S., Muriana, F.J.G., Guillen, R., Jimenez-Araujo, A., Rodriguez-Arcos, R., and Lopez, S., Saponins from edible spears of wild asparagus inhibit AKT, p70S6K, and ERK signalling, and induce apoptosis through G0/G1 cell cycle arrest in human colon cancer HCT-116 cells, J. Funct. Foods, 2016, vol. 26, pp. 1–10. https://doi.org/10.1016/j.jff.2016.07.007

    Article  CAS  Google Scholar 

  12. Ji, Y., Ji, C., Yue, L., and Xu, H., Saponins isolated from Asparagus induce apoptosis in human hepatoma cell line HepG2 through a mitochondrial-mediated pathway, Curr. Oncol., 2012, vol. 19, no. 11, pp. 1–9. https://doi.org/10.3747/co.19.1139

    Article  Google Scholar 

  13. Kolomiiets, Yu. and Skuba, A. Optimization of biotechnological process of clonal micropropagation in vitro of Asparagus officinalis L., Biol. Sist.: Teor. Innovatsii, 2021, vol. 12, no. 3, pp. 24–33. https://doi.org/10.31548/biologiya2021.03.003

    Article  Google Scholar 

  14. Kumar, K., Debnath, P., Singh, S., and Kumar, N., An overview of plant phenolics and their involvement in abiotic stress tolerance, Stresses, 2023, vol. 3, pp. 570–585. https://doi.org/10.3390/stresses3030040

    Article  Google Scholar 

  15. Liu, W., Huang, X.-F., Qi, Q., Dai, Q.-S., Yang, L., Nie, F.-F., Lu, N., Gong, D.-D., Kong, L.-Y., and Guo, Q.-L., Asparanin A induces G2/M cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells, Biochem. Biophys. Res. Commun., 2009, vol. 381, no. 4, pp. 700–705. https://doi.org/10.1016/j.bbrc.2009.02.124

    Article  CAS  PubMed  Google Scholar 

  16. Ma, J., Li, X., He, M., Li, Y., Lu, W., Li, M., Sun, B., and Zheng, Y., A joint transcriptomic and metabolomic analysis reveals the regulation of shading on lignin biosynthesis in Asparagus, Int. J. Mol. Sci., 2023, vol. 24, p. 1539. https://doi.org/10.3390/ijms24021539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. MarElia, C.B., Sharp, A.E., Shemwell, T.A., Zhang, Y.C., and Burkhardt, B.R., Anemarrhena asphodeloides Bunge and its constituent timosaponin-AIII induce cell cycle arrest and apoptosis in pancreatic cancer cells, FEBS Open Bio, 2018, vol. 8, no. 7, pp. 1155–1166. https://doi.org/10.1002/2211-5463.12457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mishiba, K.I., Tawada, K.I., and Mii, M., Ploidy distribution in the explant tissue and the calluses induced during the initial stage of internode segment culture of Asparagus officinalis L., In Vitro Cell. Dev. Biol.-Plant, 2006, vol. 42, no. 1, pp. 83–88. https://doi.org/10.1079/IVP2005724

    Article  Google Scholar 

  19. Murashige, T. and Skoog, F., A Revised medium for rapid growth and bio assays with tobacco tissue cultures, Physiol. Plant., 1962, vol. 15, no. 3, pp. 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  20. Nakabayashi, R., Nishizawa, T., Mori, T., Sudo, H., Fujii, I., Asano, T., and Saito, K., Producing the sulfur-containing metabolite asparaptine in Asparagus calluses and a suspension cell line, Plant Biotechnol. (Tokyo), 2019, vol. 36, no. 4, pp. 265–267. https://doi.org/10.5511/plantbiotechnology.19.1002a

    Article  CAS  Google Scholar 

  21. Pachuau, L., Laldinchhana Roy, P.K., Zothantluanga, J.H., Ray, S., and Das, S., Encapsulation of bioactive compound and its therapeutic potential, in Bioactive Natural Products for Pharmaceutical Applications, 2021, vol. 140, pp. 687–714. https://doi.org/10.1007/978-3-030-54027-2_20

  22. Pegiou, E., Mumm, R., Acharya, P., de Vos, R.C.H., and Hall, R.D., Green and White Asparagus (Asparagus officinalis): A source of developmental, chemical and urinary intrigue, Metabolites, 2020, vol. 10, no. 1, p. 17. https://doi.org/10.3390/metabo10010017

    Article  CAS  Google Scholar 

  23. Pontaroli, A.C. and Camadro, E.L., Somaclonal variation in Asparagus officinalis plants regenerated by organogenesis from long-term callus cultures, Genet. Mol. Biol., 2005, vol. 28, no. 3, pp. 423–430. https://doi.org/10.1590/S1415-47572005000300015

    Article  Google Scholar 

  24. Prinsi, B. and Espen, L., Time-course of metabolic and proteomic responses to different nitrate/ammonium availabilities in roots and leaves of maize, Int. J. Mol. Sci., 2018, vol. 19, no. 8, p. 2022. https://doi.org/10.3390/ijms19082202

    Article  CAS  Google Scholar 

  25. Pu, Y., Zhou, Q., Yu, L., Li, C., Dong, Y., Yu, N., and Chen, X., Longitudinal analyses of lignin deposition in green asparagus by microscopy during high oxygen modified atmosphere packaging, Food Packag. Shelf Life, 2020, vol. 25, p. 100536. https://doi.org/10.1016/j.fpsl.2020.100536

    Article  Google Scholar 

  26. Qin, J., Yue, X., Shang, X., and Fang, S., Nitrogen forms alter triterpenoid accumulation and related gene expression in Cyclocarya paliurus (Batalin) Iljinsk. Seedlings, Forests, 2020, vol. 11, no. 6, p. 631. https://doi.org/10.3390/f11060631

    Article  Google Scholar 

  27. Raimondi, J.P., Camadro, E.L., and Babinec, F.J., Somatic embryogenesis in Asparagus officinalis L. cv. Argenteuil: interactions between genotype, explant type and growth regulators on callus induction, growth and embryogenic differentiation, Biocell, 2001, vol. 25, no. 2, pp. 147–154. https://doi.org/10.1007/s00000-005-5039-5

    Article  CAS  PubMed  Google Scholar 

  28. Schäfer, J., Wagner, S., Trierweiler, B., and Bunzel, M., Characterization of cell wall components and their modifications during postharvest storage of Asparagus officinalis L.: Storage-related changes in dietary fiber composition, J. Agric. Food Chem., 2016, vol. 64, no. 2, pp. 478–486. https://doi.org/10.1021/acs.jafc.5b05575

    Article  CAS  PubMed  Google Scholar 

  29. Singleton, V.L. and Rossi, J.A., Colorimetry of total phenolics with phosphomolybdic-phosphotungistic acid reagents, Am. J. Enol. Viticult., 1965, vol. 16, no. 3, pp. 144–158. https://doi.org/10.5344/ajev.1965.16.3.144

    Article  CAS  Google Scholar 

  30. Upadhyay, S., Jeena, G.S., Shikha, and Shukla, R.K., Recent advances in steroidal saponins biosynthesis and in vitro production, Planta, 2018, vol. 248, no. 3, pp. 519–544. https://doi.org/10.1007/s00425-018-2911-0

    Article  CAS  PubMed  Google Scholar 

  31. Yumi, K., Kang-Hoon, K., In-Seung, L., Young, P.J., Yun-Cheol, N., Won-Seok, C., and Hyeung-Jin, J., Apoptosis and G2/M cell cycle arrest induced by a timosaponin A3 from Anemarrhena asphodeloides Bunge on AsPC-1 pancreatic cancer cells, Phytomedicine, 2019, vol. 56, pp. 48–56. https://doi.org/10.1016/j.phymed.2018.08.006

    Article  CAS  Google Scholar 

  32. Zhang, F., Zhang, Y.-Y., Sun, Y.-S., Ma, R.-H., Thakur, K., Zhang, J.-G., and Wei Z.-J., Asparanin A from Asparagus officinalis L. induces G0/G1 cell cycle arrest and apoptosis in human endometrial carcinoma Ishikawa cells via mitochondrial and PI3K/AKT signaling pathways, J. Agric. Food Chem., 2020, vol. 68, no. 1, pp. 213–224. https://doi.org/10.1021/acs.jafc.9b07103

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Kolomiiets.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skuba, A.O., Likhanov, A.F., Butsenko, L.M. et al. Effect of the Nitrogen Source on the Synthesis of Secondary Metabolites by Suspension Culture of Medicinal Asparagus Asparagus officinalis L.. Cytol. Genet. 58, 11–20 (2024). https://doi.org/10.3103/S0095452724010031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452724010031

Navigation