Skip to main content
Log in

Interactions Between Bacteria and Several Redox-Sensitive Metals (Fe, Mn, U) in the Sediments of the Yellow River Estuary Wetland, China

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Estuarine wetlands are characterized by high biodiversity and active fluctuations in redox-sensitive metals (RSMs). In this study, sediment samples were collected from two sites, one with and one without vegetation, in the Yellow River Estuary Wetland (YREW). Active forms of Fe, Mn, and U were extracted using Tessier’s sequential extraction method, the bacterial community was analyzed through high-throughput sequencing, and the impact of the community on the RSMs was evaluated. The results indicated that the high nutrient content generated by vegetation withering had a positive effect on bacterial biodiversity, which led to high biomass and a wide variety of species in the sediments. Redox conditions and nutrient levels were the main factors influencing bacterial community structure. Under reducing conditions, genera such as Desulfococcus and Desulfosarcina were the main bacteria mediating the reduction of active Fe and Mn. Bacteria in genera such as Desulfatiglans and Desulfotomaculum were the main bacteria mediating the reduction of active U. These bacteria may result in obvious changes in the release of Fe, Mn, and U from salt marshes to nearshore regions. Our results can help to elucidate the interactions of bacteria and RSMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Our data is usable.

References

  • Agnello, A.C., M. Bagard, E.D. van Hullebusch, G. Esposito, and D. Huguenot. 2016. Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Science of the Total Environment 563: 693–703.

    Article  ADS  PubMed  Google Scholar 

  • Anderson, R., A. LeHuray, M. Fleisher, and J. Murray. 1989. Uranium deposition in saanich inlet sediments, vancouver island. Geochimica Et Cosmochimica Acta 53 (9): 2205–2213.

    Article  ADS  CAS  Google Scholar 

  • Bai, J., L. Huang, D. Yan, Q. Wang, H. Gao, R. Xiao, and C. Huang. 2011. Contamination characteristics of heavy metals in wetland soils along a tidal ditch of the Yellow River Estuary, China. Stochastic Environmental Research and Risk Assessment 25 (5): 671–676.

    Article  Google Scholar 

  • Benjamini, Y., and Y. Hochberg. 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (methodological) 57 (1): 289–300.

    MathSciNet  Google Scholar 

  • Bokulich, N.A., B.D. Kaehler, J.R. Rideout, M. Dillon, E. Bolyen, R. Knight, G.A. Huttley, and J. Gregory Caporaso. 2018. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6 (1): 1–17.

    Article  Google Scholar 

  • Bulgarelli, D., K. Schlaeppi, S. Spaepen, and Themaat EVLv, Schulze-Lefert P,. 2013. Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology 64: 807–838.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., Y. Jiang, H. Huang, L. Mou, J. Ru, J. Zhao, and S. Xiao. 2018. Long-term and high-concentration heavy-metal contamination strongly influences the microbiome and functional genes in Yellow River sediments. Science of the Total Environment 637: 1400–1412.

    Article  ADS  PubMed  Google Scholar 

  • Čížková, H. 1999. Growth dynamics and ecophysiology of Phragmites in relation to the climatic conditions in boreal- Mediterranean and oceanic-continental gradients. Final Project Report to the European Commission (contract no. ENV4-CT95-0147). University of Aarhus, Risskov, Denmark

  • de Carvalho Aguiar, V.M., P.F.F. Abuchacra, J.A.B. Neto, and A.S. de Oliveira. 2018. Environmental assessment concerning trace metals and ecological risks at Guanabara Bay, RJ, Brazil. Environmental Monitoring and Assessment 190: 1–17.

    Article  Google Scholar 

  • DeSantis, T.Z., P. Hugenholtz, N. Larsen, M. Rojas, E.L. Brodie, K. Keller, T. Huber, D. Dalevi, P. Hu, and G.L. Andersen. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microb 72 (7): 5069–5072.

    Article  ADS  CAS  Google Scholar 

  • Edmonds, J.W., N.B. Weston, S.B. Joye, X. Mou, and M.A. Moran. 2009. Microbial community response to seawater amendment in low-salinity tidal sediments. Microbial Ecology 58: 558–568.

    Article  ADS  PubMed  Google Scholar 

  • Fritzsche, A., J. Bosch, M. Sander, C. Schroder, J.M. Byrne, T. Ritschel, P. Joshi, M. Maisch, R.U. Meckenstock, and A. Kappler. 2021. Organic matter from redoximorphic soils accelerates and sustains microbial Fe (III) reduction. Environmental Science & Technology 55 (15): 10821–10831.

    Article  ADS  CAS  Google Scholar 

  • Froelich, P.N., G. Klinkhammer, M.L. Bender, N. Luedtke, G.R. Heath, D. Cullen, P. Dauphin, D. Hammond, B. Hartman, and V. Maynard. 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis. Geochimica Et Cosmochimica Acta 43 (7): 1075–1090.

    Article  ADS  CAS  Google Scholar 

  • Fude, L., B. Harris, M.M. Urrutia, and T.J. Beveridge. 1994. Reduction of Cr (VI) by a consortium of sulfate-reducing bacteria (SRB III). Appl Environ Microb 60 (5): 1525–1531.

    Article  ADS  CAS  Google Scholar 

  • García-Ordiales, E., S. Covelli, J.M. Esbrí, J. Loredo, and P.L. Higueras. 2016. Sequential extraction procedure as a tool to investigate PTHE geochemistry and potential geoavailability of dam sediments (Almadén mining district, Spain). CATENA 147: 394–403.

    Article  Google Scholar 

  • Gómez-Pereira, P.R., M. Schüler, B. Fuchs, C. Bennke, H. Teeling, J. Waldmann, M. Richter, V. Barbe, E. Bataille, F. Glöckner, and R. Amann. 2012. Genomic content of uncultured Bacteroidetes from contrasting oceanic provinces in the North Atlantic Ocean. Environmental Microbiology 14 (1): 52–66.

    Article  PubMed  Google Scholar 

  • Grandjean, T.J., J.C. de Smit, J. van Belzen, G.S. Fivash, J. van Dalen, T. Ysebaert, and T.J. Bouma. 2023. Morphodynamic signatures derived from daily surface elevation dynamics can explain the morphodynamic development of tidal flats. Water Science and Engineering 16 (1): 14–25.

    Article  Google Scholar 

  • Heck, K.L., G. Belle, and D. Simberloff. 1975. Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology 56 (6): 1459–1461.

    Article  Google Scholar 

  • Héry, M., and Dongen BVv, Gill F, Mondal D, Vaughan D, Pancost R, Polya D, Lloyd J,. 2010. Arsenic release and attenuation in low organic carbon aquifer sediments from West Bengal. Geobiology 8 (2): 155–168.

    Article  PubMed  Google Scholar 

  • Hirsch, M.D., Z.T. Long, and B. Song. 2011. Anammox bacterial diversity in various aquatic ecosystems based on the detection of hydrazine oxidase genes (hzoA/hzoB). Microbial Ecology 61 (2): 264–276.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Hooper, D., and P. Vitousek. 1997. The effects of plant composition and diversity on ecosystem processes. Science 277 (5330): 1302–1305.

    Article  CAS  Google Scholar 

  • Humbert, S., S. Tarnawski, N. Fromin, M.P. Mallet, M. Aragno, and J. Zopfi. 2010. Molecular detection of anammox bacteria in terrestrial ecosystems: Distribution and diversity. The ISME Journal 4 (3): 450–454.

    Article  PubMed  Google Scholar 

  • Jia, H.L., K.J. Sun, J. Zhang, and X.X. Luo. 2014. Distribution and pollution assessment of heavy metals in surface sediment in Yellow River estuary and the adjacent sea area. Applied Mechanics and Materials 665: 464–468.

    Article  Google Scholar 

  • Jin, Z., Y. Sato, M. Kawashima, and M. Kanehisa. 2023. KEGG tools for classification and analysis of viral proteins. Protein Science 32 (12): e4820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jnr, M.H., and A.I. Spiff. 2005. Speciation and bioavailability of heavy metals in sediments of Diobu River, Port Harcourt. Nigeria. Editorial Board 6 (3): 20.

    Google Scholar 

  • Jroundi, F., F. Martínez-Ruiz, M. Merroun, and M.T. González-Muñoz. 2019. Exploring bacterial community composition in Mediterranean deep-sea sediments and their role in heavy metal accumulation. Science of the Total Environment 712: 135660.

    Article  ADS  PubMed  Google Scholar 

  • Kang, S., J.D. Van Nostrand, H.L. Gough, Z. He, T.C. Hazen, D.A. Stahl, and J. Zhou. 2013. Functional gene array–based analysis of microbial communities in heavy metals-contaminated lake sediments. FEMS Microbiology Ecology 86 (2): 200–214.

    Article  CAS  PubMed  Google Scholar 

  • Kappler, A., and K.L. Straub. 2005. Geomicrobiological cycling of iron. Reviews in Mineralogy and Geochemistry 59 (1): 85–108.

    Article  ADS  CAS  Google Scholar 

  • Klinkhammer, G., D. Heggie, and D. Graham. 1982. Metal diagenesis in oxic marine sediments. Earth and Planetary Science Letters 61 (2): 211–219.

    Article  ADS  CAS  Google Scholar 

  • Li, F., M. Li, W. Shi, H. Li, Z.-t Sun, and Z. Gao. 2017. Distinct distribution patterns of proteobacterial nirK- and nirS-type denitrifiers in the Yellow River estuary. China. Canadian Journal of Microbiology (print) 63 (8): 708–718.

    Article  CAS  Google Scholar 

  • Li, J., Q. Chen, Q. Li, C. Zhao, and Y. Feng. 2021. Influence of plants and environmental variables on the diversity of soil microbial communities in the Yellow River Delta Wetland. China. Chemosphere 274: 129967.

    Article  CAS  PubMed  Google Scholar 

  • Liu, B., J. Luo, S. Jiang, Y. Wang, Y. Li, X. Zhang, and S. Zhou. 2021. Geochemical fractionation, bioavailability, and potential risk of heavy metals in sediments of the largest influent river into Chaohu Lake. China. Environmental Pollution 290: 118018.

    Article  CAS  PubMed  Google Scholar 

  • Liu, C., Y.A. Gorby, J.M. Zachara, J.K. Fredrickson, and C.F. Brown. 2002. Reduction kinetics of Fe (III), Co (III), U (VI), Cr (VI), and Tc (VII) in cultures of dissimilatory metal-reducing bacteria. Biotechnology and Bioengineering 80 (6): 637–649.

    Article  CAS  PubMed  Google Scholar 

  • Lovley, D.R. 2003. Cleaning up with genomics: Applying molecular biology to bioremediation. Nature Reviews Microbiology 1 (1): 35–44.

    Article  CAS  PubMed  Google Scholar 

  • Lovley, D.R., and E.J. Phillips. 1992. Reduction of uranium by Desulfovibrio desulfuricans. Appl Environ Microb 58 (3): 850–856.

    Article  ADS  CAS  Google Scholar 

  • Lovley, D.R., E.E. Roden, E.J.P. Phillips, and J.C. Woodward. 1993. Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Marine Geology 113: 41–53.

    Article  ADS  CAS  Google Scholar 

  • Lv, X., B. Ma, J. Yu, S.X. Chang, J. Xu, Y. Li, G. Wang, G. Han, G. Bo, and X. Chu. 2016. Bacterial community structure and function shift along a successional series of tidal flats in the Yellow River Delta. Scientific Reports 6 (1): 36550.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Möller, A., A. Grahn, and U. Welander. 2004. Precipitation of heavy metals from landfill leachates by microbially-produced sulphide. Environmental Technology 25 (1): 69–77.

    Article  PubMed  Google Scholar 

  • Morel, F.M., and N.M. Price. 2003. The biogeochemical cycles of trace metals in the oceans. Science 300 (5621): 944–947.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Nealson, K.H., and C.R. Myers. 1992. Microbial reduction of manganese and iron: New approaches to carbon cycling. Appl Environ Microb 58 (2): 439–443.

    Article  ADS  CAS  Google Scholar 

  • Nie, M., X.-d Zhang, J.-q Wang, L.-f Jiang, J. Yang, Z.-x Quan, X.-h Cui, C.-m Fang, and B. Li. 2009. Rhizosphere effects on soil bacterial abundance and diversity in the Yellow River Deltaic ecosystem as influenced by petroleum contamination and soil salinization. Soil Biology and Biochemistry 41: 2535–2542.

    Article  CAS  Google Scholar 

  • Niu, Z.-s, J. Yan, X.-p Guo, M. Xu, Y. Sun, F.-y Tou, G.-y Yin, L.-j Hou, M. Liu, and Y. Yang. 2021. Human activities can drive sulfate-reducing bacteria community in Chinese intertidal sediments by affecting metal distribution. Science of the Total Environment 786: 147490.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Portnoy, J., and A. Giblin. 1997. Effects of historic tidal restrictions on salt marsh sediment chemistry. Biogeochemistry 36: 275–303.

    Article  CAS  Google Scholar 

  • Qi, M., T. Sun, H. Zhang, M. Zhu, W. Yang, D. Shao, and A. Voinov. 2017. Maintenance of salt barrens inhibited landward invasion of Spartina species in salt marshes. Ecosphere 8 (10): e01982.

    Article  Google Scholar 

  • Qiao, J.-t, X.-m Li, and F.-b Li. 2018. Roles of different active metal-reducing bacteria in arsenic release from arsenic-contaminated paddy soil amended with biochar. Journal of Hazardous Materials 344: 958–967.

    Article  CAS  PubMed  Google Scholar 

  • Rognes, T., T. Flouri, B. Nichols, C. Quince, and F. Mahé. 2016. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4: e2584.

    Article  PubMed  PubMed Central  Google Scholar 

  • Scala, D.J., E.L. Hacherl, R. Cowan, L.Y. Young, and D.S. Kosson. 2006. Characterization of Fe (III)-reducing enrichment cultures and isolation of Fe (III)-reducing bacteria from the Savannah River site. South Carolina. Research in Microbiology 157 (8): 772–783.

    CAS  PubMed  Google Scholar 

  • Sheng, Y., H. Cao, Y. Li, and Y. Zhang. 2011. Effects of sulfide on sulfate reducing bacteria in response to Cu (II), Hg (II) and Cr (VI) toxicity. Chinese Science Bulletin 56 (9): 862–868.

    Article  ADS  CAS  Google Scholar 

  • Simon, R. 2009. Genomics and pharmacogenomics in anticancer drug development and clinical response. Clinical Pharmacology & Therapeutics 85 (2): 125.

    Google Scholar 

  • Smith, LD., and U. Garg. 2017. Disorders of vitamins and cofactors 361–397. https://doi.org/10.1016/B978-0-12-802896-4.00011-0.

  • Stone, J.J., W.D. Burgos, R.A. Royer, and B.A. Dempsey. 2006. Impact of zinc on biological Fe (III) and nitrate reduction by Shewanella putrefaciens CN32. Environmental Engineering Science 23 (4): 691–704.

    Article  CAS  Google Scholar 

  • Sun, J., Y. Chi, Z. Fu, T. Li, and K. Dong. 2020. Spatiotemporal variation of plant diversity under a unique estuarine wetland gradient system in the Yellow River Delta, China. Chinese Geographical Science 30: 217–232.

    Article  Google Scholar 

  • Sun, Z., X. Mou, and W. Sun. 2016a. Decomposition and heavy metal variations of the typical halophyte litters in coastal marshes of the Yellow River estuary, China. Chemosphere 147: 163–172.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Sun, Z., X. Mou, C. Tong, C. Wang, Z. Xie, H. Song, W. Sun, and Y. Lv. 2015. Spatial variations and bioaccumulation of heavy metals in intertidal zone of the Yellow River estuary, China. CATENA 126: 43–52.

    Article  CAS  Google Scholar 

  • Sun, Z., X. Mou, D. Zhang, W. Sun, X. Hu, and L. Tian. 2016b. Impacts of burial by sediment on decomposition and heavy metal concentrations of Suaeda salsa in intertidal zone of the Yellow River estuary. China. Marine Pollution Bulletin 116 (1–2): 103–112.

    Google Scholar 

  • Swarzenski, P., P.L. Campbell, D. Porcelli, and B. McKee. 2004. The estuarine chemistry and isotope systematics of 234,238U in the Amazon and Fly Rivers. Continental Shelf Research 24 (19): 2357–2372.

    Article  ADS  Google Scholar 

  • Tang, W., B. Shan, H. Zhang, X. Zhu, and S. Li. 2016. Heavy metal speciation, risk, and bioavailability in the sediments of rivers with different pollution sources and intensity. Environmental Science and Pollution Research 23: 23630–23637.

    Article  CAS  PubMed  Google Scholar 

  • Tessier, A., P. Campbell, and M. Bisson. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry 51 (7): 844–851.

    Article  CAS  Google Scholar 

  • VALDÉS J,. 2004. Redox-sensitive metals evaluation as proxis of paleoxygenation in a hypoxic marine environment of northern Chile. Revista Chilena De Historia Natural 77 (1): 121–138.

    Article  Google Scholar 

  • Wang, J., J.-J. Wang, Z. Zhang, Z.-f Li, Z.-g Zhang, D. Zhao, L. Wang, F. Lu, and Y.-z Li. 2020. Shifts in the bacterial population and ecosystem functions in response to vegetation in the Yellow River Delta wetlands. Msystems 5 (3): 10–1128.

    Article  Google Scholar 

  • Wang, X., L. Li, Y. Ren, P. Cao, A. Zhu, J. Liu, and X. Shi. 2023. Early diagenesis and benthic fluxes of redox-sensitive metals in eastern China shelf sediments. Frontiers in Marine Science 10: 1154248.

    Article  Google Scholar 

  • Wang, Y., M. Ling, R. Liu, P. Yu, A. Tang, X. Luo, and Q. Ma. 2016. Distribution and source identification of trace metals in the sediment of Yellow River Estuary and the adjacent Laizhou Bay. Physics and Chemistry of the Earth 97: 62–70.

    Article  ADS  CAS  Google Scholar 

  • Wang, Y., H.-f Sheng, Y. He, J.-Y. Wu, Y.-x Jiang, N. Tam, and H.-W. Zhou. 2012. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Appl Environ Microb 78 (23): 8264–8271.

  • Wang, Z., K. Yang, J. Yu et al. 2022. Soil Bacterial Community Structure in Different Micro-Habitats on the Tidal Creek Section in the Yellow River Estuary. Frontiers in Ecology and Evolution. https://doi.org/10.3389/fevo.2022.950605.

  • Wilms, R., B. Köpke, H. Sass, T.S. Chang, H. Cypionka, and B. Engelen. 2006. Deep biosphere-related bacteria within the subsurface of tidal flat sediments. Environmental Microbiology 8 (4): 709–719.

    Article  CAS  PubMed  Google Scholar 

  • Windom, H., R.G. Smith, F. Niencheski, and C. Alexander. 2000. Uranium in rivers and estuaries of globally diverse, smaller watersheds. Marine Chemistry 68 (4): 307–321.

    Article  CAS  Google Scholar 

  • Xia, N., X. Xia, T. Liu, L. Hu, B. Zhu, X. Zhang, and J. Dong. 2014. Characteristics of bacterial community in the water and surface sediment of the Yellow River, China, the largest turbid river in the world. Journal of Soils and Sediments 14: 1894–1904.

    Article  CAS  Google Scholar 

  • Xia, N., X. Xia, B. Zhu, S. Zheng, and J. Zhuang. 2013. Bacterial diversity and community structure in the sediment of the middle and lower reaches of the Yellow River, the largest turbid river in the world. Aquatic Microbial Ecology 71 (1): 43–55.

    Article  Google Scholar 

  • Xie, Z., G. Zhao, Z. Sun, and J. Liu. 2014. Comparison of arsenic and heavy metals contamination between existing wetlands and wetlands created by river diversion in the Yellow River estuary, China. Environmental Earth Sciences 72: 1667–1681.

    Article  ADS  CAS  Google Scholar 

  • Xing, C., X. Lang, H. Ma, Y. Peng, Y. Peng, Y. Liu, R. Wang, M. Ning, Y. Cui, and X. Yu. 2021. Predominant microbial iron reduction in sediment in early Cambrian sulfidic oceans. Global and Planetary Change 206: 103637.

    Article  Google Scholar 

  • Xu, Y.-N., and Y. Chen. 2020. Advances in heavy metal removal by sulfate-reducing bacteria. Water Science and Technology 81 (9): 1797–1827.

    Article  PubMed  Google Scholar 

  • Xu, Y., H. Gao, and X. Wei. 2021. Heavy metals and their ecological risk in the surface sediments of Laizhou Bay. Periodical of Ocean University of China 51 (11): 74–85.

    Google Scholar 

  • Yan, P., M. Li, G. Wei, H. Li, and Z. Gao. 2017. Molecular fingerprint and dominant environmental factors of nitrite-dependent anaerobic methane-oxidizing bacteria in sediments from the Yellow River Estuary. China. Plos ONE 10 (9): e0137996.

    Article  Google Scholar 

  • Yin, H.Z., P. Yao, and Z.G. Yu. 2012. Study advances in chemical biomarkers of terrestrial organic matter in marine margins environment. Marine Environmental Science, 31(1). https://doi.org/10.1007/s11783-011-0280-z . http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYHJ201201029.htm

  • Yu, C., X. Jiang, C. Meng, J. Sui, and Q. Liu. 2018. The impact of water-sediment regulation scheme on the concentration of dissolved uranium and sea flux in the lower reaches of the Yellow River. Acta Oceanologica Sinica 40 (10): 209–219.

    Google Scholar 

  • Yu, Y., M. Cui, Y. Xiao, M. Chang, C. Wang, L. Zhao, Y. Cao, Y. Miao, Z. Chen, S. Han, and J. Zheng. 2020. Quantitative estimation of stochastic and deterministic processes for soil prokaryotic community assembly in the Yellow River floodplain. European Journal of Soil Science 72 (3): 1462–1477.

    Article  Google Scholar 

  • Yu, Y., H. Wang, J. Liu, Q. Wang, T. Shen, W. Guo, and R.-q Wang. 2012. Shifts in microbial community function and structure along the successional gradient of coastal wetlands in Yellow River Estuary. European Journal of Soil Biology 49: 12–21.

    Article  Google Scholar 

  • Yuan, H., S. An, Z. Zhu, and W. Pan. 2016. Speciation and bioavailability of heavy metals in sediments taken from wetland in the Huaihe River Basin. Journal of Environmental Engineering 142 (9): C5015001.

    Article  Google Scholar 

  • Zhang, H., F. Liu, S. Zheng, L. Chen, X. Zhang, and J. Gong. 2020. The differentiation of iron-reducing bacterial community and iron-reduction activity between riverine and marine sediments in the Yellow River estuary. Marine Life Science & Technology 2: 87–96.

    Article  ADS  Google Scholar 

  • Zhang, H., S. Zheng, J. Ding, O. Wang, and F. Liu. 2017a. Spatial variation in bacterial community in natural wetland-river-sea ecosystems. Journal of Basic Microbiology 57 (6): 536–546.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L., Z. Wang, H. Cai, W. Lu, and J. Li. 2021. Long-term agricultural contamination shaped diversity response of sediment microbiome. Journal of Environmental Science 99: 90–99.

    Article  CAS  Google Scholar 

  • Zhang, S.-Y., J. Su, G. Sun, Y. Yang, Y. Zhao, J. Ding, Y. Chen, Y. Shen, G. Zhu, and C.R. Zhu Y-g. 2017b. Land scale biogeography of arsenic biotransformation genes in estuarine wetland. Environmental Microbiology 19 (6): 2468–2482.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, T., X. Jiang, Q. Liu, T. Shang, X. Zhong, and C. Meng. 2023. Changes of active particulate uranium under the Water-Sediment Regulation Scheme in the lower Yellow River: Potential impact to the uranium flux into the global ocean. Marine Pollution Bulletin 192: 115014.

    Article  CAS  PubMed  Google Scholar 

  • Zhong, X., X. Jiang, H. He et al. 2023. Application of sequential extraction for analyzing source and sink of uranium in Huanghe River sediments. China. Journal of Oceanology and Limnology, 1–11. https://doi.org/10.1007/s00343-022-1410-0https://link.springer.com/article/10.1007/s00343-022-1410-0

  • Zhong, X., C. Zhou, X. Yin et al. 2024. Tidal inundation and plant growth/decay impact redox-sensitive metal geochemistry and fluxes in salt marsh porewater. Science of The Total Environment 912:169091. https://doi.org/10.1016/j.scitotenv.2023.169091

  • Zhou, Y., C. Kellermann, and C. Griebler. 2012. Spatio-temporal patterns of microbial communities in a hydrologically dynamic pristine aquifer. FEMS Microbiology Ecology 81 (1): 230–242. https://doi.org/10.1111/j.1574-6941.2012.01371.x.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the Natural Science Foundation of China (NSFC 41876077 and 41376085). The research was performed in the Marine Biogeochemistry Laboratory of the Key Laboratory of Marine Chemistry Theory and Technology of the Ministry of Education and Key Laboratory of Marine Environment and Ecology and Technology of the Ministry of Education, Ocean University of China.

Funding

Natural Science Foundation of China

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueyan Jiang.

Additional information

Communicated by Wen-Xiong Wang

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 162 KB)

Supplementary file2 (PDF 233 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, J., Zhong, X., Zhang, T. et al. Interactions Between Bacteria and Several Redox-Sensitive Metals (Fe, Mn, U) in the Sediments of the Yellow River Estuary Wetland, China. Estuaries and Coasts (2024). https://doi.org/10.1007/s12237-024-01338-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12237-024-01338-7

Keywords

Navigation