Skip to main content
Log in

Enhanced Bioactivity of Streptomycin Bioconjugated Metal Nanoparticles Against Streptomycin Resistant Bacillus Sp

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The emergence of multidrug resistance in pathogenic organisms has caused growing concern, especially among healthcare providers, necessitating the development of new antimicrobial compounds. Resistance to metal nanoparticles is more challenging for any pathogen and thus paved a new avenue of research to formulate a new line of drugs combined with metal nanoparticles to treat microbial resistance. In this present investigation, green synthesised silver (AgNP), gold (AuNP), and platinum (PtNP) nanoparticles using the rind extract of the fruit of Garcinia mangostana L., were bioconjugated with Streptomycin. Visual colour change in solution was evidenced as the result of bioconjugation process and also significant shift in the UV–Vis spectra was recorded. The antibacterial activity against Streptomycin resistant Bacillus sp., was performed with bare and bioconjugates, AuNP and PtNP did not show any activity whereas their bioconjugates showed 100% activity and MIC was recorded as 0.1067ppm (SAuNP) and 34ppm (SPtNP), SAgNP and AgNP showed antibacterial activity but comparatively higher activity was exhibited by SAgNP. MIC for AgNP and SAgNP was recorded as 0.325 ppm and 0.187 ppm respectively. The results of cell viability test showed that the highest percentage of cell death was recorded with SAuNP treated cells (96%), followed by SPtNP (95.5%), SAgNP (95.4%) and AgNP (92.6%). The hemocompatibility was evaluated using human erythrocytes. No hemolysis was observed with any of the test compounds at their MIC. The results of SEM analysis supported the report as it showed the characteristic biconcave RBC cells with smooth surfaces, strongly suggesting hemocompatibility of the test compounds.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Neu HC (1979) The crisis in antibiotic resistance. Science 257(5073):1064–1073. https://doi.org/10.1126/science.257.5073.1064

    Article  ADS  Google Scholar 

  2. Craig RM, Alvaro SM (2004) The evolution of antibiotic resistance. Science 365(6458):1082–1083. https://doi.org/10.1126/science.aax3879

    Article  CAS  Google Scholar 

  3. Gary VD, Kristopher PH, Holly KH, Paul RR, Stacy LC, Angela BB (2001) Antimicrobial resistance among clinical isolates of Streptococcus pneumoniae in the United States during 1999–2000, including a comparison of resistance rates since 1994–1995. Antimicrob Agents Chemother 45:1721–1729. https://doi.org/10.1128/AAC.45.6.1721-1729.2001

    Article  Google Scholar 

  4. Neu HC, Gootz TD, Baron S (1996) Antimicrobial chemotherapy. In: Medical microbiology. University of Texas Medical Branch 1273. https://pubmed.ncbi.nlm.nih.gov/21413283/

  5. Neha G, Camilla R, Rajeev S (2015) Pioneers in antimicrobial chemotherapy. J Assoc Physician India 63:90–91

    Google Scholar 

  6. Bakshi MS (2017) Nanotoxicity in systemic circulation and wound healing. Chem Res Toxicol 30:1253–1274. https://doi.org/10.1021/acs.chemrestox.7b00068

    Article  CAS  PubMed  Google Scholar 

  7. Pan D, Vargas-Morales O, Zern B, Anselmo AC, Gupta V, Zakrewsky M (2016) The effect of polymeric nanoparticles on biocompatibility of carrier red blood cells. PLoS ONE. https://doi.org/10.1371/journal.pone.0152074

    Article  PubMed  PubMed Central  Google Scholar 

  8. Qiang Chen L, Fang L, Ling J, Zhi Ding C, Kang B, Zhi Huang C (2015) Nanotoxicity of silver nanoparticles to red blood cells: size dependent adsorption, uptake, and hemolytic activity. Chem Res Toxicol 28:501–509. https://doi.org/10.1021/tx500479m

    Article  CAS  Google Scholar 

  9. Choi J, Reipa V, Hitchins VM, Goering PL, Malinauskas RA (2011) Physicochemical characterization and in vitro hemolysis evaluation of silver nanoparticles. Toxicol Sci 123:133–143. https://doi.org/10.1093/toxsci/kfr149

    Article  CAS  PubMed  Google Scholar 

  10. Fattah B, Arif H, Hamzah H (2022) Antimicrobial and antibiofilm activity of biosynthesized silver nanoparticles against beta-lactamase-resistant Enterococcus faecalis. Appl Biochem Biotechnol 194:2036–2046. https://doi.org/10.1007/s12010-022-03805-y

    Article  CAS  PubMed  Google Scholar 

  11. Godoy GM, Eckhard U, Delgado LM, de Roo-Puente YJD, Hoyos-Nogués M, Gil FJ, Roman AP (2021) Antibacterial approaches in tissue engineering using metal ions and nanoparticles: from mechanisms to applications. Bioact Mater 6(12):4470–4490. https://doi.org/10.1016/j.bioactmat.2021.04.033

    Article  CAS  Google Scholar 

  12. Ajingi S, Jongruja N (2020) Antimicrobial peptide engineering: rational design, synthesis, and synergistic effect. Russ J Bioorg Chem 46:463–479. https://doi.org/10.1134/S1068162020040044

    Article  Google Scholar 

  13. Nainu F, Permana AD, Juniarti N, Djide N, Anjani QK, Utami RN (2021) Antibiotics pharmaceutical approaches on antimicrobial resistance: prospects and challenges. Antibiotics 10:981. https://doi.org/10.3390/antibiotics10080981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mohammed AA, Hegazy AE, Salah A (2023) Novelty of synergistic and cytotoxicity activities of silver nanoparticles produced by Lactobacillus acidophilus. Appl Nanosci 13:633–640. https://doi.org/10.1007/s13204-021-01878-50

    Article  ADS  CAS  Google Scholar 

  15. Hussein HA, Syamsumir DF, Radzi SAM, Siong JYF, Zin NAM, Abdullah MA (2020) Phytochemical screening, metabolite profiling and enhanced antimicrobial activities of microalgal crude extracts in co-application with silver nanoparticle. Bioresour Bioprocess 7:39. https://doi.org/10.1186/s40643-020-00322-w1

    Article  Google Scholar 

  16. Hashem AH, Shehabeldine AM, Ali OM, Salem SS (2022) Synthesis of chitosan-based gold nanoparticles: antimicrobial and wound-healing activities. Polymers 14(11):2293. https://doi.org/10.3390/polym14112293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yu X, Li J, Mu D, Zhang H, Liu Q, Chen G (2021) Green synthesis and characterizations of silver nanoparticles with enhanced antibacterial properties by secondary metabolites of Bacillus subtilis (SDUM301120). Green Chem Lett Rev 14:189–202. https://doi.org/10.1080/17518253.2021.1894244

    Article  CAS  Google Scholar 

  18. Nishanthi R, Malathi S, Palani P (2019) Green synthesis and characterization of bioinspired silver, gold and platinum nanoparticles and evaluation of their synergistic antibacterial activity after combining with different classes of antibiotics. Mater Sci Eng C 96:693–707. https://doi.org/10.1016/j.msec.2018.11.050

    Article  CAS  Google Scholar 

  19. Chakraborty SP, Sahu SK, Mahapatra SK, Santra S, Bal M, Roy S et al (2010) Nanoconjugated vancomycin: new opportunities for the development of anti-VRSA agents. Nanotechnology 21(10):105103. https://doi.org/10.1088/0957-4484/21/10/105103

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Manikandan D, Michael IJD, Manikandan A, Nagendra Gandhi N, Kathiravn K, Baykal A (2018) Biogenic synthesis, characterization of gold and silvernanoparticles from coleus forskohlii and their clinical importance. J Photochem Photobio B 183:251–257. https://doi.org/10.1016/j.jphotobiol.2018.04.042

    Article  CAS  Google Scholar 

  21. Dalai S, Pakrashi S, Kumar RSS, Chandrasekaran N, Mukherjee A (2012) A comparative cytotoxicity study of TiO2 nanoparticles under light and dark conditions at low exposure concentrations. Toxicol Res 1:116–130. https://doi.org/10.1039/C2TX00012A

    Article  CAS  Google Scholar 

  22. Malathi S, Prabhu P, Nishanthi R, Suresh BR, Sriman NS, Palani P (2014) Highly potential antifungal activity of quantum-sized silver nanoparticles against candida albicans. Appl Biochem Biotechnol 173:55–66. https://doi.org/10.1007/s12010-014-0782-9

    Article  CAS  Google Scholar 

  23. Tängdén T (2014) Combination antibiotic therapy for multidrug-resistant Gram-negative bacteria. Upsala J Med Sci Informa Healthcare 119:149–153. https://doi.org/10.3109/03009734.2014.899279

    Article  Google Scholar 

  24. Paul M, Lador A, Grozinsky-Glasberg S, Leibovici L (2014) Beta lactam antibiotic monotherapy versus beta lactam-aminoglycoside antibiotic combination therapy for sepsis. Cochrane Database Syst Rev 7:CD003344. https://doi.org/10.1002/14651858.CD003344.pub3

    Article  Google Scholar 

  25. MbaNweze IEEI (2021) Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: research progress, challenges, and prospects. World J Microbiol Biotechnol 37:3. https://doi.org/10.1007/s11274-021-03070-x

    Article  Google Scholar 

  26. Rahuman HBH, Dhandapani R, Palanivel V, Thangavelu S, Paramasivam R, Muthupandian S (2021) Bioengineered phytomolecules-capped silver nanoparticles using Carissa carandas leaf extract to embed on to urinary catheter to combat UTI pathogens. PLoS ONE 16:10256748. https://doi.org/10.1371/journal.pone.0256748

    Article  ADS  CAS  Google Scholar 

  27. Campo-Beleño C, Villamizar-Gallardo RA, López-Jácome LE, González EE, Muñoz-Carranza S, Franco B (2022) Biologically synthesized silver nanoparticles as potent antibacterial effective against multidrug-resistant Pseudomonas aeruginosa. Lett Appl Microbiol 75:680–688. https://doi.org/10.1111/lam.13759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shanmugam J, Manikandan D, Mohammed Riyaz SU, Mayakkannan G, Moonis AK, Jesus SG, Antonio CS (2022) Green synthesis of silver nanoparticles using allium cepa var. aggregatum natural extract: antibacterial and cytotoxic properties. Nanomaterials 12:1725. https://doi.org/10.3390/nano12101725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lambadi PR, Sharma TK, Kumar P, Vasnani P, Thalluri SM, Bisht N, Pathania R, Navani NK (2015) Facile biofunctionalization of silver nanoparticles for enhanced antibacterial properties, endotoxin removal, and biofilm control. Int J Nanomedicine 10:2155–2171. https://doi.org/10.2147/IJN.S72923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nirmala Grace A, Pandian K (2007) Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles—a brief study. Colloids Surf A Physicochem Eng Asp 297:63–70. https://doi.org/10.1016/j.colsurfa.2006.10.024

    Article  CAS  Google Scholar 

  31. Megha Shyam M, Afrasim Moin R, Medishetti KR, Raichur AM, Kumar BRP (2015) Dual drug conjugate loaded nanoparticles for the treatment of cancer. Curr Drug Deliv 12:782–794. https://doi.org/10.2174/1567201812666150507120452

    Article  CAS  Google Scholar 

  32. Ganeshkumar M, Sathishkumar M, Ponrasu T, Dinesh MG, Suguna L (2013) Spontaneous ultra fast synthesis of gold nanoparticles using Punica granatum for cancer targeted drug delivery. Colloids Surf B Biointerfaces 106:208–216. https://doi.org/10.1016/j.colsurfb.2013.01.035

    Article  CAS  PubMed  Google Scholar 

  33. Shruthi TS, Meghana MR, Medha MU, Sanjana S, Navya PN, Kumar Daima H (2019) Streptomycin functionalization on silver nanoparticles for improved antibacterial activity. Mater Today Proc 10:8–15. https://doi.org/10.1016/j.matpr.2019.02.181

    Article  CAS  Google Scholar 

  34. Debalina B, Saha B, Mukherjee A, Santra CR (2012) Gold nanoparticles conjugated antibiotics: stability and functional evaluation. Nanosci Nanotechnol 2:14–21. https://doi.org/10.5923/j.nn.20120202.04

    Article  CAS  Google Scholar 

  35. Rai A, Prabhune A, Perry CC (2010) Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J Mater Chem 20(32):6789–6798. https://doi.org/10.1039/C0JM00817F

    Article  CAS  Google Scholar 

  36. Renuga Devi TS, Gayathri S (2010) FTIR and FT-Raman spectral analysis of Paclitaxel drugs. Int J Pharm Sci Rev Res 2:106–110

    CAS  Google Scholar 

  37. Mandell, Douglas Benett’s (1995) Principles and pratice of infectious diseases. In: The clinician and the microbiology laboratory. Churchille, Livingston, Philadelphia, pp 169–99. https://doi.org/10.1016/S1473-3099(10)70089-X

  38. Das B, Dash SK, Mandal D, Ghosh T, Chattopadhyay S, Tripathy S et al (2017) Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arab J Chem 10:862–876. https://doi.org/10.1016/j.arabjc.2015.08.008

    Article  CAS  Google Scholar 

  39. Swathy JR, Sankar MU, Chaudhary A, Aigal S, Pradeep T, States U (2014) Antimicrobial silver: an unprecedented anion effect. Sci Rep 4:1–5. https://doi.org/10.1038/srep07161

    Article  CAS  Google Scholar 

  40. Dutta T, Chowdhury SK, Ghosh NN, Chattopadhyay AP, Das M, Mandal V (2022) Green synthesis of antimicrobial silver nanoparticles using fruit extract of Glycosmis pentaphylla and its theoretical explanations. J Mol Struct 1247:131361. https://doi.org/10.1016/j.molstruc.2021.131361

    Article  CAS  Google Scholar 

  41. Eltarahony M, Ibrahim A, El-Shall H, Ibrahim E, Althobaiti F, Fayad E (2021) Antibacterial, antifungal and antibiofilm activities of silver nanoparticles supported by crude bioactive metabolites of bionanofactories isolated from lake mariout. Molecules 26(10):3027. https://doi.org/10.3390/molecules2610302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346–2353. https://doi.org/10.1088/0957-4484/16/10/059

    Article  ADS  CAS  PubMed  Google Scholar 

  43. AshaRani PV, Mun GLK, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACSNano 3:279–290. https://doi.org/10.1021/nn800596w

    Article  CAS  Google Scholar 

  44. Barik TK, Sahu B, Swain V (2008) Nanosilica—from medicine to pest control. Parasitol Res 103:253–258. https://doi.org/10.1007/s00436-008-0975-7.45

    Article  CAS  PubMed  Google Scholar 

  45. Lin YS, Haynes CL (2010) Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. J Am Chem Soc 132(13):4834–4842. https://doi.org/10.1021/ja910846q

    Article  CAS  PubMed  Google Scholar 

  46. Li S, Zhu R, Zhu H, Xue M, Sun X, de Yao S et al (2008) Nanotoxicity of TiO 2 nanoparticles to erythrocyte in vitro. Food Chem Toxicol 46:3626–3631. https://doi.org/10.1016/j.fct.2008.09.012

    Article  CAS  PubMed  Google Scholar 

  47. Kim D, El-Shall H, Dennis D, Morey T (2005) Interaction of PLGA nanoparticles with human blood constituents. Colloids Surf B Biointerfaces 40:83–91. https://doi.org/10.1016/j.colsurfb.2004.05.007

    Article  CAS  PubMed  Google Scholar 

  48. Praveen KK, Paul W, Sharma PC (2011) Green synthesis of gold nanoparticles with Zingiber officinale extract: characterization and blood compatibility. Process Biochem 46(10):2007–2013. https://doi.org/10.1016/j.procbio.2011.07.011

    Article  CAS  Google Scholar 

  49. Sen IK, Kumar A, Chakraborti S, Dey B (2013) Green synthesis of silver nanoparticles using glucan from mushroom and study of antibacterial activity. Int J Biol Macromol 62:439–449. https://doi.org/10.1016/j.ijbiomac.2013.09.019

    Article  CAS  PubMed  Google Scholar 

  50. Shiny PJ, Mukherjee A, Chandrasekaran N (2014) Haemocompatibility assessment of synthesised platinum nanoparticles and its implication in biology. Bioprocess Biosyst Eng 37:991–997. https://doi.org/10.1007/s00449-013-1069-1

    Article  CAS  PubMed  Google Scholar 

  51. Raja A, Salique SM, Gajalakshmi P, James A (2016) Antibacterial and hemolytic activity nanoparticles from catharanthus roseus green. Int J Pharmaceut Sci Nanotechnol 9:3112–3117. https://doi.org/10.37285/ijpsn.2016.9.1.6

    Article  CAS  Google Scholar 

  52. Srinath BS, Namratha K, Byrappa K (2017) Eco-friendly synthesis of gold nanoparticles by gold mine bacteria Brevibacillus formosus and their antibacterial and biocompatible studies. IOSR J Pharm 7:53–60

    CAS  Google Scholar 

  53. Foo YY, Periasamy V, Kiew LV, Kumar GG, Malek SNA (2017) Curcuma mangga-mediated synthesis of gold nanoparticles: characterization, stability, cytotoxicity, and blood compatibility. Nanomaterials 7:123. https://doi.org/10.3390/nano7060123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jayashree S, Aruna Sharmili S, Roshitha S, Balaji R, Mahendrakumar M, Mohammed Riyaz SU, Manikandan D, Antonio CS, Jesus SG (2023) Green preparation of bract extract(musa acuminate) doped magnesium oxide nanoparticles and their bio efficacy. Appl Organometall Chem Appl Organomet Chem 37:e7063. https://doi.org/10.1002/aoc.7063

    Article  CAS  Google Scholar 

  55. Asharani PV, Sethu S, Vadukumpully S, Zhong S, Lim CT, Hande MP, Suresh V (2010) Investigations on the structural damage in human erythrocytes exposed to silver, gold, and platinum nanoparticles. Adv Funct Mater 20:1233–1242. https://doi.org/10.1002/adfm.200901846

    Article  CAS  Google Scholar 

  56. Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15:897–900. https://doi.org/10.1021/bc049951i

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author, R.N, expresses thanks to the Department of Science and Technology for the financial support of INSPIRE Senior Research Fellowship (SRF) and the Director, CAS in Botany, for providing the necessary facilities to carry out the work. The authors also thank the National Centre for Nanoscience and Nanotechnology, the University of Madras for HR-TEM analyses, SAIF-IIT Madras for FT-IR analyses, and SRM-IST for FACS analyses. The authors acknowledge King Saud University, Riyadh, Saudi Arabia, for funding this research through Researchers Supporting Project No: RSPR2024/11.

Author information

Authors and Affiliations

Authors

Contributions

NR: Conceptualization, Methodology, Software, Writing—Original Draft, MD: Formal analysis, nanoparticle synthesis, review editing, MS: Formal analysis, Analyze the experimental data, SUMR: Formal analysis, Validation, PP: Resources, Investigation, SSI: Formal analysis, review editing, RR: funding acquisition, review editing, AA: funding acquisition, review editing, AS: project administration, Writing—review & editing. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Nishanthi Ramasami, Manikandan Dhayalan or Antony Stalin.

Ethics declarations

Conflict of interest

There is no competing interest.

Ethical Approval

Human blood samples from volunteers were taken by Nishanthi. R, SRF- DST-INSPIRE Fellow, CAS in Botany, University of Madras at CAS in Botany, University of Madras and was done so with informed consent of all participants. For the blood sampling and aggregation experiments, no approval from an ethics committee was required at University of Madras, Chennai in India.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4376 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramasami, N., Dhayalan, M., Selvaraj, M. et al. Enhanced Bioactivity of Streptomycin Bioconjugated Metal Nanoparticles Against Streptomycin Resistant Bacillus Sp. Indian J Microbiol (2024). https://doi.org/10.1007/s12088-024-01234-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12088-024-01234-5

Keywords

Navigation