Skip to main content
Log in

Fabrication of Ceramic Composites by Microwave Sintering

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

To prepare 0.5LaPO4–0.5ZrO2 and 0.5LaPO4–0.5Y2O3 ceramic composites, a microwave assisted sol-gel procedure for the synthesis of nanosized 0.5LaPO4·nH2O–0.5ZrO(OH)2 and 0.5LaPO4· nH2O–0.5Y(OH)3 precursor powders was developed. Ceramic composites were prepared by microwave sintering of powders at 1100°C after preliminary heat treatment of precursor powders at 850°C, as well as by conventional stepwise sintering at 1000, 1100 and 1200°C for 24 h. The unit cell parameters of monoclinic LaPO4 were calculated depending on sintering method and temperature. The values of specific surface area of the samples, Vickers microhardness, and thermal conductivity were determined; fracture surface of ceramic samples was studied. Such a complex study of 0.5LaPO4–0.5ZrO2 and 0.5LaPO4–0.5Y2O3 composites is presented for the first time. The influence of sintering method, temperature and addition of zirconia and yttria to LaPO4 on the resulting composite’s properties, phase composition and type of ceramic fracture surface is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. Chaim, R., Levin, M., Shlayer, A., and Estournès, C., Sintering and densification of nanocrystalline ceramic oxide powders: A review, Adv. Appl. Ceram., 2008, vol. 107, no. 3, pp. 159–169. https://doi.org/10.1179/174367508X297812

    Article  CAS  ADS  Google Scholar 

  2. Keskinova, M.V., Ogurtsov, K.A., Sychov, M., Kolobkova, E.V., Turkin, I.A., Nakanishi, Y., and Hara, K., Synthesis of chlorine-silicate phosphors for white light-emitting diodes, Adv. Appl. Ceram., 2015, vol. 1117, pp. 48–51. 10.4028/www.scientific.net/AMR.1117.48

  3. Alshits, V.I., Darinskaya, E.V., Koldaeva, M.V., and Petrzhik, E.A., Magnetoplastic effect: Basic properties and physical mechanisms, Crystallogr. Rep., 2003, vol. 48, pp. 768–795. https://doi.org/10.1134/1.1612598

    Article  CAS  ADS  Google Scholar 

  4. Borrell, A. and Salvador, M.D., Advanced ceramic materials sintered by microwave technology, in Sintering Technology—Method and Application, Liu, M., Ed., I-ntechOpen, 2018, chapter 1. https://doi.org/10.5772/intechopen.75146

    Book  Google Scholar 

  5. Karayannis, V.G., Microwave sintering of ceramic materials. IOP Conf. Ser.: Mater. Sci. Eng., 2016, vol. 161, p. 012068. https://doi.org/10.1088/1757-899X/161/1/012068

  6. Dolgin, A.S., Keskinova, M.V., Bogdanov, S.P., and Sychev, M.M., Microwave processing of diamond–carbide silicon composite, Glass Phys. Chem., 2023, vol. 48, no. 6, pp. 664–668. https://doi.org/10.1134/S1087659622600685

    Article  Google Scholar 

  7. Enikeeva, M.O., Kenges, K.M., Proskurina, O.V., Danilovich, D.P., and Gusarov V.V., Influence of hydrothermal treatment conditions on the formation of lanthanum orthophosphate nanoparticles of monazite structure, Russ. J. Appl. Chem., 2020, vol. 93, no. 4, pp. 540–548. https://doi.org/10.1134/S1070427220040084

    Article  CAS  Google Scholar 

  8. Dong, W., Zhang, X., Shi, H., Wang, N., Zhang, W., Li, L., and Xue Q., Preparation and luminescence properties of color-tunable single-phased LaPO4: Eu3+/Tb3+ phosphors, Chem. Res. Chin. Univ., 2016, vol. 32, no. 2, pp. 248–252. https://doi.org/10.1007/s40242-016-5407-0

    Article  CAS  Google Scholar 

  9. Colomer, M.T., Delgado, I., Ortiz, A.L., and Fariñas, J.C., Microwave-assisted hydrothermal synthesis of single-crystal nanorods of rhabdophane-type Sr-doped LaP-O4·nH2O, J. Am. Ceram. Soc., 2014, vol. 97, no. 3, pp. 750–758. https://doi.org/10.1111/jace.12799

    Article  CAS  Google Scholar 

  10. Arinicheva, Y., Bukaemskiy, A., Neumeier, S., Modolo, G., and Bosbach, D., Studies on thermal and mechanical properties of monazite-type ceramics for the conditioning of minor actinides, Prog. Nucl. Energy, 2014, vol. 72, pp. 144–148. https://doi.org/10.1016/j.pnucene.2013.09.004

    Article  CAS  Google Scholar 

  11. Palma-Ramírez, D., Domínguez-Crespo, M.A., Torres-Huerta, A.M., Dorantes-Rosales, H., Ramírez-Meneses, E., and Rodríguez, E., Microwave-assisted hydrothermal synthesis of CePO4 nanostructures: Correlation between the structural and optical properties. J. Alloys Compd., 2015, vol. 643, suppl. 1, pp. S209–S218. https://doi.org/10.1016/j.jallcom.2014.12.053

    Article  CAS  Google Scholar 

  12. Li, C., Li, K., Li, H., Zhang, Y., Ouyang, H., Liu, L., and Sun, C., Effect of reaction temperature on crystallization of nanocrystalline zirconia synthesized by microwave-hydrothermal process, J. Alloys Compd., 2013, vol. 561, pp. 23–27. https://doi.org/10.1016/j.jallcom.2013.01.157

    Article  CAS  Google Scholar 

  13. Baghramyan, V.V., Sargsyan, A.A., Sargsyan, A.S., Knyayan, N.B., Harutyunyan, V.V., Aleksanyan, E.M., Grigoryan, N.E., and Badalyan, A.H., Optical properties and radiation resistance of zirconium silicate obtained by microwave method, Arm. J. Phys., 2017, vol. 10, no. 1, pp. 56–63.

    CAS  Google Scholar 

  14. Ebadzadeh, T. and Valefi, M., Microwave-assisted sintering of zircon, J. Alloys Compd., 2008, vol. 448, nos. 1–2, pp. 246–249. https://doi.org/10.1016/j.jallcom.2007.02.032

    Article  CAS  Google Scholar 

  15. Mezentseva, L.P., Osipov, A.V., Krivoruchko, Yu.A., Lovtsova, O.Yu., and Koptelova, L.A., Ceramic composites based on nanosized lanthanum orthophosphate and their properties, Glass Phys. Chem., 2021, vol. 47, no. 6, pp. 657‒664. https://doi.org/10.1134/S1087659621060201

    Article  CAS  Google Scholar 

  16. Mezentseva, L.P., Osipov, A.V., Ugolkov, V.L., Kruchinina, I.Yu., Ivanova, P.I., Khamova, T.V., and Lubimtsev, A.S., Ceramic composites based on lanthanum orthophosphate and alumina: Preparation and properties, Glass Phys. Chem., 2022, vol. 48, no. 3, pp. 219–231. https://doi.org/10.1134/S1087659622030075

    Article  CAS  Google Scholar 

  17. Keskinova M.V., Turkin I.A., and Sychev M.M., Mikrovolnovoi sintez fosforov: Metodicheskie ukazaniya (Microwave Synthesis of Phosphors: Methodical Guidelines), St. Petersburg: St. Petersburg Gos. Tekhnol. Inst., 2015.

  18. Mezentseva, L., Osipov, A., Ugolkov, V., Kruchinina, I., Maslennikova, T., and Koptelova, L., Sol-gel synthesis of precursors and preparation of ceramic composites based on LaPO4 with Y2O3 and ZrO2 additions, J. Sol-Gel Sci. Technol., 2019, vol. 92, no. 2, pp. 427‒441. https://doi.org/10.1007/s10971-019-05003-5

    Article  CAS  Google Scholar 

  19. RF Patent 2791913, 2023.

  20. Deepthi, T., and Balamurugan, K., Effect of yttrium (20%) doping on mechanical properties of rare earth nano lanthanum phosphate (LaPO4) synthesized by aqueous sol-gel process, Ceram. Int., 2019, vol. 45, no. 15, pp. 18 229‒18 235. https://doi.org/10.1016/j.ceramint.2019.06.033

    Article  CAS  Google Scholar 

  21. Lavrov, A.V., Guzeeva, L.S., Fedorov, P.M., and Tananaev, I.V., Formation of zirconium and hafnium metaphosphates in phosphoric acid melts, Izv. Akad. Nauk SSSR, Neorg. Mater., 1974, vol. 10, no. 5, pp. 851‒856.

    CAS  Google Scholar 

  22. Nekrasova, R.A., Chichagov, A.V., Ushakovskaya, T.V., Novikov, M.P., and Rudenko, V.N., Morphotropic series of synthetic rare-earth phosphates. Roentgenometry of some monazite analogs. Mineral. J., 1988, vol. 10, no. 6, pp. 16–28.

    CAS  Google Scholar 

  23. Nekrasova, R.A., Novikov, M.P., and Romanenko, I.M., Morphotropic series of synthetic monazite analogs. Synthesis, composition and physical properties, Mineral. J., 1985, vol. 7, no. 6, pp. 33–45.

    CAS  Google Scholar 

  24. Mezentseva, L.P., Osipov, A.V., Akatov, A.A., Doil’nitsyn, V.A., Pugachev, K.E., and Koptelova, L.A., Ceramic matrix composites based on lanthanum orthophosphate for disposal of high-level radioactive waste, Glass Phys. Chem., 2019, vol. 45, no. 6, pp. 565–572. https://doi.org/10.1134/S1087659620010125

    Article  CAS  Google Scholar 

  25. Achary, S.N., Bevara, S., and Tyagi, A.K., Recent progress on synthesis and structural aspects of rare-earth phosphates, Coord. Chem. Rev., 2017, vol. 340, pp. 266–297. https://doi.org/10.1016/j.ccr.2017.03.006

    Article  CAS  Google Scholar 

  26. Zuo, F., Saunier, S., Meunier, C., and Goeuriot, D., Non-thermal effect on densification kinetics during microwave sintering of α-alumina, Scr. Mater., 2013, vol. 69, no. 4, pp. 331‒333. https://doi.org/10.1016/j.scriptamat.2013.05.016

    Article  CAS  Google Scholar 

  27. Du, A., Wan, Ch., Qu, Z., and Pan, W., Thermal conductivity of monazite-type REPO4 (RE = La, Ce, Nd, Sm, Eu, Gd), J. Am. Ceram. Soc., 2009, vol. 92, no. 11, pp. 2687–2692. https://doi.org/10.1111/j.1551-2916.2009.03244.x

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Sciences and Higher Education of the Russian Federation as part of the state assignment of the Institute of Silicate Chemistry, Russian Academy of Sciences (project nos. 0081-2022-0008 and 0081-2022-0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Mezentseva.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mezentseva, L.P., Keskinova, M.V., Osipov, A.V. et al. Fabrication of Ceramic Composites by Microwave Sintering. Glass Phys Chem 49 (Suppl 1), S54–S65 (2023). https://doi.org/10.1134/S108765962360093X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S108765962360093X

Keywords:

Navigation