Skip to main content
Log in

Measurement of the Hugoniot Elastic Limit in Ideal Ceramics

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

For the first time, a new ceramic “Ideal,” a diamond-silicon carbide composite obtained in the reaction-diffusion Turing process, which makes it possible to obtain materials with the optimal set of physical and mechanical properties, is studied. An elastic-brittle fracture related to the propagation of a shock wave in a two-component system is noted. The dynamic elastic limit, determined by the properties of silicon carbide, is found to be 13.4 GPa. Its dynamic elastic limit and spall strength in the region of the elastic deformation are measured. The impact compressibility of ceramics up to a pressure of 625 GPa is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. RF Patent 2 731 703, 2020.

  2. RF Patent 2 732 258, 2020.

  3. Turing A. The chemical basis of morphogenesis, Philos. Trans. R. Soc., B, 1952, vol. 237, no. 641, pp. 37–72.

  4. Shevchenko, V.Ya., Kovalchuk, M.V., Oryshchenko, A.S., and Perevislov, S.N., New chemical technologies based on Turing reaction–diffusion processes, Dokl. Chem., 2021, vol. 496, no. 2, pp. 28–31. https://doi.org/10.1134/S0012500821020038

    Article  CAS  Google Scholar 

  5. Shevchenko, V.Ya., Perevislov, S.N., and Ugolkov, V.L., Physicochemical interaction processes in the carbon (diamond)–silicon system, Glass Phys. Chem., 2021, vol. 47, no. 3, pp. 197–208. https://doi.org/10.1134/S108765962103010X

    Article  CAS  Google Scholar 

  6. Shevchenko, V.Ya. and Perevislov, S.N., Reaction–diffusion mechanism of synthesis in the diamond–silicon carbide system, Russ. J. Inorg. Chem., 2021, vol. 66, no. 8, pp. 11107–1114. https://doi.org/10.1134/S003602362108026X

    Article  Google Scholar 

  7. Landau, L.D. and Lifshits, E.M., Mekhanika sploshnykh sred (Continuum Mechanics), Moscow: Gostekhizdat, 1953.

  8. Knippenberg, W.F., Growth phenomena in silicon carbide, Philips Res. Rep., 1963, vol. 18, pp. 161–274.

    CAS  Google Scholar 

  9. Kanel, G.I., Fortov, V.E., and Razorenov, S.V., Shock waves in condensed-state physics, Phys.—Usp., 2007, vol. 50, pp. 771–792. https://doi.org/10.1070/PU2007v050n08ABEH006327

  10. Kanel, G.I., Zaretsky, E.B., Razorenov, S.V., Ashitkov, S.I., and Fortov, V.E., Unusual plasticity and strength of metals at ultra-short load durations, Phys.—Usp., 2017, vol. 60, pp. 490–508. https://doi.org/10.3367/UFNe.2016.12.038004

  11. Barker, L.M. and Hollenbach, R.E., Laser interferometer for measuring high velocities of any reflecting surface, J. Appl. Phys., 1972, vol. 43, no. 11, pp. 4669–4675. https://doi.org/10.1063/1.1660986

    Article  ADS  Google Scholar 

  12. Bartkowski, P. and Dandekar, D.P., Spall strength of sintered and hot pressed silicon carbide, AIP Conf. Proc., 1996, vol. 370, no. 1, pp. 535–538. https://doi.org/10.1063/1.50654

    Article  ADS  CAS  Google Scholar 

  13. Gregor, M.C., Fratanduono, D.E., McCoy, C.A., Polsin, D.N., Sorce, A., Rygg, J.R., Collins, G.W., Braun, T., Celliers, P.M., Eggert, J.H., Meyerhofer, D.D., and Boehly, T.R., Hugoniot and release measurements in diamond shocked up to 26 Mbar, Phys. Rev. B, 2017, vol. 95, no. 14, p. 144114. https://doi.org/10.1103/PhysRevB.95.144114

  14. McWilliams, R.S., Eggert, J.H., Hicks, D.G., Bradley, D.K., Celliers, P.M., Spaulding, D.K., Boehly, T.R., Collins, G.W., and Jeanloz, R., Strength effects in diamond under shock compression from 0.1 to 1 TPa, Phys. Rev. B, 2010, vol. 81, no. 1, p. 014111. https://doi.org/10.1103/PhysRevB.81.014111

    Article  ADS  CAS  Google Scholar 

  15. Savinykh, A.S., Kanel, G.I., Razorenov, S.V., and Rumyantsev, V.I., Evolution of shock waves in SiC ceramic, Tech. Phys., 2013, vol. 58, no. 7, pp. 973–977. https://doi.org/10.1134/S1063784213070207

    Article  CAS  Google Scholar 

  16. Li, Y., Cao, X., Yu, Y., Li, X., Zhang, L., Zhu, W., Zhou, X., He, H., Meng, C., and He, D., Shock compression of diamonds in silicon carbide matrix up to 110 GPa, J. Appl. Phys., 2020, vol. 128, no. 24, p. 245901. https://doi.org/10.1063/5.0033747

    Article  ADS  CAS  Google Scholar 

  17. Katagiri, K., Ozaki N., Umeda, Y., Irifune, T., Kamimura, N., Miyanishi, K., Sano, T., Sekine, T., and Kodama, R., Shock response of full density nanopolycrystalline diamond, Phys. Rev. Lett., 2020, vol. 125, no. 18, p. 185701. https://doi.org/10.1103/PhysRevLett.125.185701

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Nikolaev, D., Ternovoi, V., Kim, V., and Shutov, A., Plane shock compression generators, utilizing convergence of conical shock waves, J. Phys.: Conf. Ser., 2014, vol. 500, p. 142026. https://doi.org/10.1088/1742-6596/500/14/142026

  19. Zel’dovich, Ya.B. and Raizer, Yu.P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii (Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena), Moscow: Fizmatlit, 2008.

  20. Lomonosov, I.V., Bushman, A.V., Fortov, V.E., and Khishenko, K.V., Caloric equations of state of structural materials, AIP Conf. Proc., 1994, vol. 309, no. 1, pp. 133–136. https://doi.org/10.1063/1.46458

    Article  ADS  CAS  Google Scholar 

  21. Knudson, M.D. and Desjarlais, M.P., Adiabatic release measurements in α-quartz between 300 and 1200 GPa: Characterization of α-quartz as a shock standard in the multimegabar regime, Phys. Rev. B, 2013, vol. 88, no. 18, p. 184107. https://doi.org/10.1103/PhysRevB.88.184107

    Article  ADS  CAS  Google Scholar 

  22. Nikolaev, D.N., Kulish, M.I., Dudin, S.V., Mintsev, V.B., Lomonosov, I.V., and Fortov, V.E., Shock compressibility of single-crystal silicon in the pressure range 280–510 GPa, High Temp., 2022, vol. 60, pp. S347–S351. https://doi.org/10.1134/S0018151X2106016X

  23. Li, Y., Zhang, L., Yu, Y., Zhang, Y., Wang, Q., Cao, X., Gan, B., Zhou, X., Meng, Ch., He, H., and He, D., Shock response of micro-grained diamond–SiC composite, J. Appl. Phys., 2021, vol. 130, p. 025902. https://doi.org/10.1063/5.0048427

    Article  ADS  CAS  Google Scholar 

Download references

Funding

Ideal ceramic samples were produced the financial support of the Russian Science Foundation (grant no. 20-13-00054-P) “Materials for a new generation of armor protection based on reaction-diffusion Turing processes for the synthesis of diamond-silicon carbide composites with a structure of triply periodic surfaces of minimal energy.”

The shock wave experiments were carried out using the equipment of the Moscow Regional Explosive Center for Collective Use of the Russian Academy of Sciences as part of a state assignment (state registration no. AAA-A19-119071190040-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Perevislov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevchenko, V.Y., Oryshchenko, A.S., Lepin, V.N. et al. Measurement of the Hugoniot Elastic Limit in Ideal Ceramics. Glass Phys Chem 49 (Suppl 1), S1–S7 (2023). https://doi.org/10.1134/S1087659623601004

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659623601004

Keywords:

Navigation