Skip to main content
Log in

Temperature Dependence of Glass Microhardness

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

A method is proposed for calculating the temperature dependence of the microhardness of glass in the temperature range from absolute zero to the glass transition temperature. According to the model underlying the calculation, the glass passes into a plastic state not only under the action of temperature but also under the action of mechanical stresses above the critical value corresponding to microhardness. Therefore, under the simultaneous action of these two factors, the glass passes into a plastic state if the sum of the thermal and mechanical energy of the glass mesh exceeds the critical value. The proposed calculation method is tested on the example of organic glass and two of the most important oxide glasses for practice: fused quartz and industrial alkali-silicate glass (soda-lime-silica glass (SLSG).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Cook, R.F. and Pharr, G.M., Direct observation and analysis of indentation cracking in glasses and ceramics, J. Am. Ceram. Soc., 1990, vol. 73, no. 4, pp. 787–817. https://doi.org/10.1111/j.1151-2916.1990.tb05119.x

    Article  CAS  Google Scholar 

  2. Guin, J.-P., Rouxel, T., Sanglebœuf, J.-C., Melscoët, I., and Lucas, J., Hardness, toughness, and scratchability of germanium–selenium chalcogenide glasses, J. Am. Ceram. Soc., 2002, vol. 85, no. 6, pp. 1545–1552. https://doi.org/10.1111/j.1151-2916.2002.tb00310.x

    Article  CAS  Google Scholar 

  3. El-Zaidia, M.M., El-Gohary, Z.H., Abo-Ghazala, M.S., Turky, G.M., and Rabea, E.A., Mechanical properties of chalcogenide optic fiber material based tellurium, IOSR J. Appl. Phys., 2019, vol. 11, no. 1, pp. 55–61.

    Google Scholar 

  4. Rouxel, T., Elastic properties and short- to medium-range order in glasses, J. Am. Ceram. Soc., 2007, vol. 90, no. 10, pp. 3019–3039. https://doi.org/10.1111/j.1551-2916.2007.01945.x

    Article  CAS  Google Scholar 

  5. Freitas, R., Shimakawa, K., and Kuglerd, S., Some remarks on the glass-transition temperature in chalcogenide glasses: A correlation with the microhardness, Chalcogenide Lett., 2013, vol. 10, no. 1, pp. 39–43.

    CAS  Google Scholar 

  6. Kugler, S. and Shimakawa, K., Amorphous Semiconductors, Cambridge: Cambridge Univ. Press, 2015.

    Google Scholar 

  7. Baltá Calleja, F.J., Sanditov, D.S., and Privalko, V.P., Review: The microhardness of non-crystalline materials, J. Mater. Sci., 2002, vol. 37, no. 21, pp. 4507–4516. https://doi.org/10.1023/A:1020648908142

    Article  ADS  Google Scholar 

  8. Fakirov, S., The relationship between the microhardness and glass transition temperature of inorganic glasses compared with polymeric glasses, Int. J. Polymer. Mater. Polymer. Biomater., 2005, vol. 54, no. 12, pp. 1185–1189. https://doi.org/10.1080/009140390901707

    Article  CAS  Google Scholar 

  9. Fakirov, S., Calleja, F.J.B., and Krumova, M., On the relationship between microhardness and glass transition temperature of some amorphous polymers, J. Polym. Sci., Part B: Polym. Phys. 1999, vol. 37, no. 13, pp. 1413–1419. https://doi.org/10.1002/(SICI)1099-0488(19990701)37:13<1413::AID-POLB7>3.0.CO;2-Q

    Article  ADS  CAS  Google Scholar 

  10. Slouf, M., Strachota, B., Strachota, A., Gajdosova, V., Bertschova, V., and Nohava, J., Macro-, micro- and nanomechanical characterization of crosslinked polymers with very broad range of mechanical properties, Polymers, 2020, vol. 12, p. 2951. https://doi.org/10.3390/polym12122951

  11. Tver’yanovich, Yu.S., On the correlation of the microhardness and glass transition temperature for chalcogenide glasses, Glass Phys. Chem., 2022, vol. 48, no. 1, pp. 72–74. https://doi.org/10.1134/S1087659622010163

    Article  Google Scholar 

  12. Tveryanovich, Yu.S., The relationship between microhardness and glass transition temperature of chalcogenide glasses, Glass Phys. Chem., 2022, vol. 48, no. 4, pp. 243–247. https://doi.org/10.1134/s1087659622040149

    Article  CAS  Google Scholar 

  13. Mitkova, M., Wang, Y., and Boolchand, P., Dual chemical role of Ag as an additive in chalcogenide glasses, Phys. Rev. Lett., 1999, vol. 83, no. 19, pp. 3848—3851. https://doi.org/10.1103/PhysRevLett.83.3848

    Article  ADS  CAS  Google Scholar 

  14. Varshneya, A.K., Fundamentals of Inorganic Glasses, San Diego: Academic, 1994.

    Google Scholar 

  15. Shelby, J.E., Introduction to Glass Science and Technology, Cambridge: R. Soc. Chem., 1997.

    Google Scholar 

  16. Wiederhorn, S.M. and Hockey, B.J., Hot erosion of glass, J. Non-Cryst. Solids, 1980, vols. 38–39, part 1, pp. 433–438. https://doi.org/10.1016/0022-3093(80)90457-3

  17. Watanabe, T., Muratsubaki, K., Benino, Y., Saitoh, H., and Komatsu, T., Hardness and elastic properties of Bi2O3-based glasses, J. Mater. Sci., 2001, vol. 36, no. 10, pp. 2427–2433. https://doi.org/10.1023/A:1017973830342

    Article  ADS  CAS  Google Scholar 

  18. Watanabe, T., Benino, Y., Ishizaki, K., and Komatsu, T., Temperature dependence of vickers hardness for TeO2-based and soda-lime silicate glasses, J. Ceram. Soc. Jpn., 1999, vol. 107, no. 1252, pp. 1140–1145. https://doi.org/10.2109/jcersj.107.1140

    Article  CAS  Google Scholar 

  19. Fomenko, L.S., Lubenets, S.V., Natsik, V.D., Prokhvatilov, A.I., Galtsov, N.N., Li, Q.Q., and Koutsos, V., Investigation of the low-temperature mechanical behavior of elastomers and their carbon nanotube composites using microindentation, Low Temp. Phys., 2019, vol. 45, no. 5, pp. 568–576. https://doi.org/10.1063/1.5097367

    Article  ADS  CAS  Google Scholar 

  20. Beake, B.D. and Smith, J.F., High-temperature nanoindentation testing of fused silica and other materials, Philos. Mag. A, 2002, vol. 82, no. 10, pp. 2179–2186. https://doi.org/10.1080/01418610208235727

    Article  ADS  CAS  Google Scholar 

  21. Fakirov, S., Krumova, M., and Krasteva, B., On the temperature dependence of microhardness of some glassy polymers, J. Mater. Sci. Lett., 2000, vol. 19. no. 23, pp. 2123–2125. https://doi.org/10.1023/A:1026762408839

    Article  CAS  Google Scholar 

  22. Rusakova, H.V., Fomenko, L.S., Lubenets, S.V., and Natsik, V.D., Low-temperature features of the micromechanical properties of polystyrene, Low Temp. Phys., 2019, vol. 45, no. 12, pp. 1301–1309. https://doi.org/10.1063/10.0000213

    Article  ADS  CAS  Google Scholar 

  23. Kasap, S.O. and Yannacopoulos, S., Mechanical and thermal properties of the glassy semiconductor chlorinated Se0.997As0,003 used as an X-ray imaging material, Can. J. Phys., 1989, vol. 67, no. 7, pp. 686—693. https://doi.org/10.1139/p89-124

    Article  ADS  CAS  Google Scholar 

  24. Keryvin, V., Prasad, K.E., Gueguen, Y., Sanglebœuf, J.-C., and Ramamurty, U., Temperature dependence of mechanical properties and pressure sensitivity in metallic glasses below glass transition, Philos. Mag., 2008, vol. 88, no. 12, pp. 1773–1790. https://doi.org/10.1080/14786430802286971

    Article  ADS  CAS  Google Scholar 

  25. Vaillant, M.L., Keryvin, V., Rouxel, T., and Kawamura, Y., Changes in the mechanical properties of a Zr-55Cu30Al10Ni5 bulk metallic glass due to heat treatments below 540°C, Scr. Mater., 2002, vol. 47, no. 1, pp. 10–23. https://doi.org/10.1016/S1359-6462(02)00091-X

    Article  Google Scholar 

  26. Keryvin, V., Bernard, C., Sanglebœuf, J.-C., Yokoyama, Y., and Rouxel, T., Toughness of Zr55Cu30Al10Ni5 bulk metallic glass for two oxygen levels, J. Non-Cryst. Solids, 2006, vol. 352, nos. 26–27, pp. 2863–2868. https://doi.org/10.1016/j.jnoncrysol.2006.02.102

    Article  ADS  CAS  Google Scholar 

  27. Peker, A. and Johnson, W.L., A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5, Appl. Phys. Lett., 1993, vol. 63, no. 17, pp. 2342–2344. https://doi.org/10.1063/1.110520

    Article  ADS  Google Scholar 

  28. Donovan, P., Plastic flow and fracture of Pd40Ni40P20 metallic glass under an indentor, J. Mater. Sci., 1989, vol. 24, pp. 523–535. https://doi.org/10.1007/BF01107437

    Article  ADS  CAS  Google Scholar 

  29. Le Bourhis, E., Gadaud, P., Guin, J.-P., Tournerie, N., Zhang, X.H., Lucas, J., and Rouxel, T., Temperature dependence of the mechanical behavior of a GeAsSe glass, Scr. Mater., 2001, vol. 45, no. 3, pp. 317—323. https://doi.org/10.1016/S1359-6462(01)01034-X

    Article  CAS  Google Scholar 

  30. Calleja, F.J.B., Sanditov, D.S., and Privalko, V.P., Review: The microhardness of non-crystalline materials, J. Mater. Sci., 2002, vol. 37, no. 21, pp. 4507–4516. https://doi.org/10.1023/A:1020648908142

    Article  ADS  CAS  Google Scholar 

  31. Wang, Sh. and Tver’yanovich, Yu.S., Relationship of temperature dependences of microhardness and enthalpy of glass on the example of selenium, Glass Phys. Chem., 2023, vol. 49, no. 4, pp. 336–339. https://doi.org/10.1134/S1087659623600266

    Article  CAS  Google Scholar 

  32. Andrievskii, R.A., Lanin, A.G., and Rymashevskii, G.A., Prochnost’ tugoplavkikh soedinenii (Strength of Refractory Compounds), Andrievskii, R.A., Ed., Moscow: Metallurgiya, 1974.

    Google Scholar 

  33. Fischer-Cripps, A.C., Introduction to Contact Mechanics, New York: Springer, 2007. https://doi.org/10.1007/978-0-387-68188-7

    Book  Google Scholar 

  34. Gere, J.M. and Timoshenko, S.P. Mechanics of Materials, Kingston Upon Thames: Stanley Thornes, 1999.

    Google Scholar 

  35. Chung, H.-Y., Weinberger, M.B., Yang, J.-M., Tolbert, S.H., and Kaner, R.B., Correlation between hardness and elastic moduli of the ultraincompressible transition metal diborides RuB2, OsB2, and ReB2, Appl. Phys. Lett., 2008, vol. 92, p. 261904. https://doi.org/10.1063/1.2946665

    Article  ADS  CAS  Google Scholar 

  36. Rouxel, T., What we can learn from crystals about the mechanical properties of glass, J. Ceram. Soc. Jpn., 2022, vol. 130, no. 8, pp. 519–530. https://doi.org/10.2109/jcersj2.22067

    Article  CAS  Google Scholar 

  37. Yamane, M. and Mackenzie, J.D., Vicker’s hardness of glass, J. Non-Cryst. Solids, 1974, vol. 15, no. 2, pp. 153–164. https://doi.org/10.1016/0022-3093(74)90044-1

    Article  ADS  CAS  Google Scholar 

  38. Ali, S., Properties and hardness of mixed alkaline earth silicate oxynitride glasses, Materials, 2022, vol. 15, no. 14, pp. 1–15. https://doi.org/10.3390/ma15145022

    Article  MathSciNet  CAS  Google Scholar 

  39. Marti, E., Kaisersberger, E., and Moukhina, E., Heat capacity functions of polystyrene in glassy and in liquid amorphous state and glass transition, J. Therm. Anal. Calorim., 2006, vol. 85, no. 2, pp. 505–525. https://doi.org/10.1007/s10973-006-7745-5

    Article  CAS  Google Scholar 

  40. Katare, R., Bajpai, R., and Datt, S.C., Microhardness of blends of polystyrene and poly(methyl) methacrylate, Polym. Test., 1991, vol. 10, no. 2, pp. 139–143.

    Article  CAS  Google Scholar 

  41. DesignerData Official Website. https://designerdata.nl/materials/plastics/thermo-plastics/polystyrene. Cited December 14, 2023.

  42. iPage Official Website. https://polymerdatabase. com/polymers/polystyrene.html. Cited December 14, 2023.

  43. Gaur, U. and Wuinderlich, B., Heat capacity and other thermodynamic properties of linear macromolecules. V. Polystyrene, J. Phys. Chem. Ref. Data, 1982, vol. 11, no. 2, pp. 313–325. https://srd.nist.gov/JPCRD/jpcrd202.pdf. Cited December 19, 2023.

  44. Physical and chemical properties of silica glasses, in Silica Glass and its Application, Fanderlik, I., Ed., Amsterdam: Elsevier, 1991, vol. 11, pp. 194–270. https://doi.org/10.1016/B978-0-444-98755-6.50010-0

    Book  Google Scholar 

  45. Sharp, D. E. and Ginther, L.B., Effect of composition and temperature on the specific heat of glass, J. Am. Ceram. Soc., 1951, vol. 34, no. 9, pp. 260—271. https://doi.org/10.1111/j.1151-2916.1951.tb09128.x

    Article  CAS  Google Scholar 

  46. Beake, B.D. and Smith, J.F., High-temperature nanoindentation testing of fused silica and other materials, Philos. Mag. A, 2002, vol. 82, no. 10, pp. 2179–2186. https://doi.org/10.1080/01418610208235727

    Article  ADS  CAS  Google Scholar 

  47. Huang, J. and Gupta, P.K., Temperature dependence of the isostructural heat capacity of a soda lime silicate glass, J. Non-Cryst. Solids, 1992, vol. 139, pp. 239–247. https://doi.org/10.1016/S0022-3093(05)80831-2

    Article  ADS  CAS  Google Scholar 

  48. Cachiaras, A., Gilde, L., Swab, J.J., Patel P. J., and Quinn G.D., Soda-Lime-Silicate Float Glass: A Property Comparison, Aberdeen Proving Ground, MD: US Army Reseach Laboratory 2017, ARL-TR-8187. https://www.researchgate.net/publication/320871872_ Soda-Lime-Silicate_Float_Glass_A_Property_Comparison. Cited December 19, 2023.

  49. Watanabe, T., Benino, Y., Ishizaki, K., and Komatsu, T., Temperature dependence of vickers hardness for TeO2-based and soda-lime silicate glasses, J. Ceram. Soc. Jpn., 1999, vol. 107, no. 1252, pp. 1140–1145. https://doi.org/10.2109/jcersj.107.1140

    Article  CAS  Google Scholar 

  50. Wilantewicz, T.E. and Varner, J.R., Vickers indentation behavior of several commercial glasses at high temperatures, J. Mater. Sci., 2008, vol. 43, no. 1, pp. 281—298. https://doi.org/10.1007/s10853-007-2174-9

    Article  ADS  CAS  Google Scholar 

  51. Hemingway, B.S. and Robie, R.A., Heat Capacity of Polystyrene from 275 to 315 K, Open-file Report 94-671, Reston, VA: United States Department of the Interior U.S. Geological Survey. https://pubs.usgs.gov/of/ 1994/0671/report.pdf. Cited December 19, 2023.

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Tver’yanovich.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tver’yanovich, Y.S. Temperature Dependence of Glass Microhardness. Glass Phys Chem 49 (Suppl 1), S35–S42 (2023). https://doi.org/10.1134/S1087659623601041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659623601041

Keywords:

Navigation