Skip to main content
Log in

Composite Materials Based on Polytetrafluoroethylene with SiO2 and BaTiO3 Inorganic Fillers

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Polymer dielectric composites consisting of polytetrafluoroethylene, silicon dioxide and barium titanate mixed in various proportions were successfully synthesized by low-temperature sintering. The structure of the obtained composite samples was studied by the X-ray diffraction, the electron microscopy, and the weight method. Electrical characteristics (dielectric permittivity and losses) of samples were investigated at a frequency of 1 MHz. According to structural analysis, the synthesized samples are a mixture of amorphous polytetrafluoroethylene and silicon dioxide, and crystalline ferroelectric BaTiO3, the ratio of which determines the electrical properties of the composites. Depending on the content of barium titanate, the studied samples show a permittivity from 4 to 6.5 with a dielectric loss level of 0.06–0.14. It is shown that the significant influence on the dielectric properties of the polytetrafluoroethylene/silicon dioxide/barium titanate system is exerted by heat treatment modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Prateek, Thakur, V.K., and Gupta, R.K., Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: Synthesis, dielectric properties, and future aspects, Chem. Rev., 2016, vol. 116, no. 7, pp. 4260–4317. https://doi.org/10.1021/acs.chemrev.5b00495

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, Q.M., Li, H., Poh, M., Xia, F., Cheng, Z.-Y., Xu, H., and Huang, C., An all-organic composite actuator material with a high dielectric constant, Nature, 2002, vol. 419, no. 6904, pp. 284–287. https://doi.org/10.1038/nature01021

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Dang, Z.-M., Yuan, J.-K., Yao, S.-H., and Liao, R.-J., Flexible nanodielectric materials with high permittivity for power energy storage, Adv. Mater., 2013, vol. 25, no. 44, pp. 6334–6365. https://doi.org/10.1002/adma.201301752

    Article  CAS  PubMed  Google Scholar 

  4. Yao, L., Pan, Z., Zhai, J., Zhang, G., Liu, Z., and Liu, Y., High-energy-density with polymer nanocomposites containing of SrTiO3 nanofibers for capacitor application, Composites, Part A, 2018, vol. 109, pp. 48–54. https://doi.org/10.1016/j.compositesa.2018.02.040

    Article  CAS  Google Scholar 

  5. Zha, J.-W., Tian, Y., Zheng, M.-S., Wan, B., Yang, X., and Chen, G., High-temperature energy storage polyimide dielectric materials: Polymer multiple-structure design, Mater. Today Energy, 2023, vol. 31, p. 101217. https://doi.org/10.1016/j.mtener.2022.101217

    Article  CAS  Google Scholar 

  6. Brandt, K., Neusel, C., Behr, S., and Schneider, G.A., Dielectric behaviour and conductivity of high-filled BaTiO3–PMMA composites and the facile route of emulsion polymerization in synthesizing the same, J. Mater. Chem. C, 2013, vol. 1, pp. 3129–3137. https://doi.org/10.1039/C3TC30204K

    Article  CAS  Google Scholar 

  7. Barzic, A.I., Soroceanu, M., Rotaru, R., Doroftei, F., Asandulesa, M., Tugui, C., Dascalu, I.A., and Harabagiu, V., Cellulose derivative/barium titanate composites with high refractive index, conductivity and energy density, Cellulose, 2022, vol. 29, no. 2, pp. 863–878. https://doi.org/10.21203/rs.3.rs-467926/v1

    Article  CAS  Google Scholar 

  8. Lott, J., Xia, C., Kosnosky, L., Weder, C., and Shan, J., Terahertz photonic crystals based on barium titanate/polymer nanocomposites, Adv. Mater., 2008, vol. 20, no. 19, pp. 3649–3653. https://doi.org/10.1002/adma.200800531

    Article  CAS  Google Scholar 

  9. Luangchuang, P., Chueangchayaphan, N., Sulaiman, M.A., and Chueangchayaphan, W., Characterization of barium titanate reinforced acrylonitrile butadiene rubber composites for flexible electronic applications: Influences of barium titanate content, Polym. Int., 2021, vol. 70, no. 1, pp. 154–161. https://doi.org/10.1002/pi.6110

    Article  CAS  Google Scholar 

  10. Sebastian, M.T. and Jantunen, H., Polymer–ceramic composites of 0–3 connectivity for circuits in electronics: A Review, Int. J. Appl. Ceram. Technol., 2010, vol. 7, no. 4, pp. 415–434. https://doi.org/10.1111/j.1744-7402.2009.02482.x

    Article  CAS  Google Scholar 

  11. Yuan, Y., Yin, Y., Yu, D., Lin, H., Wang, J., Tang, B., and Li, E., Effects of compound coupling agents on the properties of PTFE/SiO2 microwave composites, J. Mater. Sci.: Mater Electron., 2017, vol. 28, pp. 3356–3363. https://doi.org/10.1007/s10854-016-5929-8

    Article  CAS  Google Scholar 

  12. Zhang, L., Zhang, J., Yue, Z., and Li, L., Thermally stable polymer–ceramic composites for microwave antenna applications, J. Adv. Ceram., 2016, vol. 5, no. 4, pp. 269–276. https://doi.org/10.1007/s40145-016-0199-8

    Article  CAS  Google Scholar 

  13. Bur, A.J., Dielectric properties of polymers at microwave frequencies: A review, Polymer, 1985, vol. 26, no. 7, pp. 963–977. https://doi.org/10.1016/0032-3861(85)90216-2

    Article  CAS  Google Scholar 

  14. Sada, T., Tsuji, K., Ndayishimiye, A., Fan. Z., Fujioka, Y., and Randall, C.A., Enhanced high permittivity BaTiO3–polymer nanocomposites from the cold sintering process, J. Appl. Phys., 2020, vol. 128, no. 8, p. 084103. https://doi.org/10.1063/5.0021040

    Article  ADS  CAS  Google Scholar 

  15. Li, H., Zhou, Y., Liu, Y., Li, L., Liu, Y., and Wang, Q., Dielectric polymers for high-temperature capacitive energy storage, Chem. Soc. Rev., 2021, vol. 50, no. 11, pp. 6369–6400. https://doi.org/10.1039/D0CS00765J

    Article  CAS  PubMed  Google Scholar 

  16. Tan, D.Q., Review of polymer-based nanodielectric exploration and film scale-up for advanced capacitors, Adv. Funct. Mater., 2019, vol, 30, no. 18, p. 1808567. https://doi.org/10.1002/adfm.201808567

  17. Zhang, X., Shen, Y., Xu, B., Zhang, Q., Gu, L., Jiang, J., Ma, J., Lin, Y., and Nan, C.-W., Giant energy density and improved discharge efficiency of solution-processed polymer nanocomposites for dielectric energy storage, Adv. Mater., 2016, vol. 28, no. 10, pp. 2055–2061. https://doi.org/10.1002/adma.201503881

    Article  CAS  PubMed  Google Scholar 

  18. Guo, M., Jiang, J., Shen, Z., Lin, Y., Nan, C.-W., and Shen, Y., High-energy-density ferroelectric polymer nanocomposites for capacitive energy storage: Enhanced breakdown strength and improved discharge efficiency, Mater. Today, 2019, vol. 29, pp. 49–67. https://doi.org/10.1016/j.mattod.2019.04.015

    Article  CAS  Google Scholar 

  19. Li, Q. and Wang, Q., Ferroelectric polymers and their energy-related applications, Macromol. Chem. Phys., 2016, vol. 217, no. 11, pp. 1228–1244. https://doi.org/10.1002/macp.201500503

    Article  ADS  CAS  Google Scholar 

  20. Chen, S., Yan, X., Liu, W., Qiao, R., Chen, S., Luo, H., and Zhang, D., Polymer-based dielectric nanocomposites with high energy density via using natural sepiolite nanofibers, Chem. Eng. J., 2020, vol. 401, p. 126095. https://doi.org/10.1016/j.cej.2020.126095

    Article  CAS  Google Scholar 

  21. Song, S., Xia, S., Liu, Y., Lv, X., and Sun, S., Effect of Na+ MMT-ionic liquid synergy on electroactive, mechanical, dielectric and energy storage properties of transparent PVDF-based nanocomposites, Chem. Eng. J., 2020, vol. 384, p. 123365.

  22. Kaur, G. and Rana, D.S., Synthesis and comprehensive study of polyvinylidene fluoride–nickel oxide–barium titanate (PVDF–NiO–BaTiO3) hybrid nanocomposite films for enhancement of the electroactive beta phase, J. Mater. Sci.: Mater. Electron., 2020, vol. 31, no. 21, pp. 18 464–18 476. https://doi.org/10.1007/s10854-020-04390-8

    Article  CAS  Google Scholar 

  23. Su, J. and Zhang, J., Recent development on modification of synthesized barium titanate (BaTiO3) and polymer/BaTiO3 dielectric composites, J. Mater. Sci.: Mater. Electron., 2019, vol. 30, no. 3, pp. 1957–1975. https://doi.org/10.1007/s10854-018-0494-y

    Article  CAS  Google Scholar 

  24. Kim, P., Jones, S.C., Hotchkiss, P.J., Haddock, J.N., Kippelen, B., Marder, S.R., and Perry, J.W., Phosphonic acid-modified barium titanate polymer nanocomposites with high permittivity and dielectric strength, Adv. Mater., 2007, vol. 19, no. 7, pp. 1001–1005. https://doi.org/10.1002/adma.200602422

    Article  CAS  Google Scholar 

  25. Brunengo, E., Conzatti, L., Schizzi, I., Buscaglia, M.T., Canu, G., Curecheriu, L., Costa, C., Castellano, M., Mitoseriu, L., Stagnaro, P, and Buscaglia, V., Improved dielectric properties of poly(vinylidene fluoride)–BaTiO3 composites by solvent-free processing, J. Appl. Polym. Sci., 2021, vol. 138, no. 12, p. 50049. https://doi.org/10.1002/app.50049

    Article  CAS  Google Scholar 

  26. Wang, Y., Yao, M., Ma, R., Yuan, Q., Yang, D., Cui, B., Ma, C., Liu, M., and Hu, D., Design strategy of barium titanate/polyvinylidene fluoride-based nanocomposite films for high energy storage, J. Mater. Chem. A, 2020, vol. 8, no. 3, pp. 884–917. https://doi.org/10.1039/C9TA11527G

    Article  CAS  Google Scholar 

  27. Khatri, B., Lappe, K., Habedank, M., Mueller, T., Megnin, C., and Hanemann, T., Fused deposition modeling of ABS-barium titanate composites: A simple route towards tailored dielectric devices, Polymers, 2018, vol. 10, no. 6, p. 66. https://doi.org/10.3390/polym10060666

  28. Kumar, A., Ahmad, D., and Patra, K., Barium titanate particle filled silicone elastomer composite: Preparation and evaluation of morphology and mechanical behavior, J. Phys.: Conf. Ser., 2019, vol. 1240, p. 012049. https://doi.org/10.1088/1742-6596/1240/1/012049

  29. Tumarkin, A.V., Al’myashev, V.I., Razumov, S.V., Gaidukov, M.M., Gagarin, A.G., Altynnikov, A.G., and Kozyrev, A.B., Structural properties of barium strontium titanate films grown under different technological conditions, Phys. Solid State, 2015, vol. 57, no. 3, pp. 553–557. https://doi.org/10.1134/S1063783415030348

    Article  ADS  CAS  Google Scholar 

  30. Vendik, O.G., Razumov, S.V., Tumarkin, A.V., Nikol’skii, M.A., Gaidukov, M.M., and Gagarin, A.G., Experimental evidence of correctness of improved model of ferroelectric planar capacitor, Appl. Phys. Lett., 2005, vol. 86, no. 2, p. 022902. https://doi.org/10.1063/1.1847691

    Article  ADS  CAS  Google Scholar 

Download references

Funding

This research was supported by the Ministry of Science and Highe Education of the Russian Federation (project Goszadanie no. 075-01438-22-07 FSEE-2022-0015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Tumarkin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tumarkin, A.V., Tyurnina, N.G., Tyurnina, Z.G. et al. Composite Materials Based on Polytetrafluoroethylene with SiO2 and BaTiO3 Inorganic Fillers. Glass Phys Chem 49 (Suppl 1), S94–S101 (2023). https://doi.org/10.1134/S1087659623601089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659623601089

Keywords:

Navigation