Skip to main content
Log in

Rheological study on lower critical solution temperature behavior of organo-soluble cyano-substituted p-aramid in isotropic phase

  • Original Article
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

Poly(2-cyano-p-phenylene terephthalamide) (CY-PPTA) has garnered significant interest as a promising precursor for super p-aramid fibers because of its organosolubility in N,N-dimethyl acetamide/lithium chloride (DMAc/LiCl) while conserving the superior properties of the resultant fibers. However, CY-PPTA has been reported to exhibit abnormal phase behavior owing to the strong dipole–dipole interactions induced by the cyano groups. Herein, we rheologically study the isotropic phases of CY-PPTA/DMAc solutions with respect to the concentration and temperature and compare them with those of CY-PPTA/sulfuric acid (H2SO4) solutions. In the isotropic region, the CY-PPTA solutions yield a higher power-law exponent of the dynamic viscosity (η') versus concentration of 6.0 (ηʹ ~ c6.0) in the DMAc system than that in H2SO4 (ηʹ ~ c3.2). Moreover, the CY-PPTA/DMAc solutions exhibit a lower critical solution temperature (LCST) behavior with increasing temperature, in contrast with the upper critical solution temperature in H2SO4. Consequently, the viscosity and exponent of the CY-PPTA/DMAc solutions increase at elevated temperatures. As shown by the Cole–Cole plot, the heterogeneity in the DMAc system becomes worse. The LCST of the CY-PPTA solution is ascribed to the intermolecular interactions between the highly polar cyano groups, which are negligible in H2SO4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Scheme 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Balbi C, Bianchi E, Ciferri A, Tealdi A, Krigbaum WR (1980) Equilibria of extended-chain polymers exhibiting crystalline and liquid-crystalline phases. J Polym Sci Pol Phys 18:2037–2053

    Article  CAS  Google Scholar 

  2. Miller DS, Carlton RJ, Mushenheim PC, Abbott NL (2013) Introduction to optical methods for characterizing liquid crystals at interfaces. Langmuir 29:3154–3169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yakacki CM, Saed M, Nair DP, Gong T, Reed SM, Bowman CN (2015) Tailorable and programmable liquid-crystalline elastomers using a two-stage thiol–acrylate reaction. RSC Adv 5:18997–19001

    Article  ADS  CAS  Google Scholar 

  4. Shirai T, Shuai M, Nakamura K, Yamaguchi A, Naka Y, Sasaki T, Clark NA, Le KV (2018) Chiral lyotropic chromonic liquid crystals composed of disodium cromoglycate doped with water-soluble chiral additives. Soft Matter 14:1511–1516

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Milak S, Zimmer A (2015) Glycerol monooleate liquid crystalline phases used in drug delivery systems. Int J Pharm 478:569–587

    Article  CAS  PubMed  Google Scholar 

  6. Dierking I, Al-Zangana S (2017) Lyotropic liquid crystal phases from anisotropic nanomaterials. Nanomaterials 7:305

    Article  PubMed  PubMed Central  Google Scholar 

  7. Meeting S, Chester W, Magat EE, Kwolek L, Morgan PW, Morgan W, Kwolek L, Morgan PW, Morgan W, Morgan W, Morgan W, Kwolek L, Morgan PW, Morgan W (1977) Synthesis, anisotropic solutions, and fibers of poly(l,4-benzamide). Macromolecules 10:1390–1396

    Article  ADS  Google Scholar 

  8. Eom Y, Kim BC (2014) Solubility parameter-based analysis of polyacrylonitrile solutions in N, N-dimethyl formamide and dimethyl sulfoxide. Polymer 55:2570–2577

    Article  CAS  Google Scholar 

  9. Eom Y, Ju H, Park Y, Chae DW, Jung YM, Kim BC, Chae HG (2020) Effect of dissolution pathways of polyacrylonitrile on the solution homogeneity: Thermodynamic- or kinetic-controlled dissolution. Polymer 205:122697

    Article  CAS  Google Scholar 

  10. Aharoni SM, Hatfield GR, O’Brien KP (1990) Bending of polyamide rigid rodlike segments. Macromolecules 23:1330–1342

    Article  ADS  CAS  Google Scholar 

  11. Doi M (1981) Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases. J Polym Sci Polym Phys 19:229–243

    Article  CAS  Google Scholar 

  12. Jung DE, Kim HJ, Chae DW, Kim BC, Eom Y (2022) Rheological and morphological evidence of binary liquid crystalline phases in solutions of an organo-soluble cyano-substituted p-aramid. Polymer 260:125357

    Article  CAS  Google Scholar 

  13. Jung DE, Eom Y, Kim BC (2019) Enthalpy-driven transition of liquid crystalline textures of poly(2-cyano-p-phenylene terephthalamide) in N, N-dimethyl acetamide/lithium chloride. Macromol Res 27:404–411

    Article  CAS  Google Scholar 

  14. Aharoni SM (1979) Rigid backbone polymers. 2 Polyisocyanates and their liquid-crystal behavior. Macromolecules 12:94–103

    Article  ADS  CAS  Google Scholar 

  15. Doi M (1980) Rheological properties of rodlike polymers in isotropic and liquid crystalline phases. Ferroelectrics 30:247–254

    Article  ADS  CAS  Google Scholar 

  16. Doi M (1975) Rotational relaxation time of rigid rod-like macromolecule in concentrated solution. J Phys 34:607–611

    Article  Google Scholar 

  17. De Gennes PG (1971) Reptation of a polymer chain in the presence of fixed obstacles. J Chem Phys 55:572–579

    Article  ADS  Google Scholar 

  18. Song J, Choi YH, Kim HJ, Kim H, Eom Y (2023) Control of reinforcing efficiency in thermoplastic polyurethane/aramid nanofiber nanocomposites: rheological and two-dimensional correlation spectroscopic approaches. Eur Polym J 193:112106

    Article  CAS  Google Scholar 

  19. Kim HJ, Jeong JH, Choi YH, Eom Y (2021) Review on cellulose nanocrystal-reinforced polymer nanocomposites: processing, properties, and rheology. Korea Aust Rheol J 33:165–185

    Article  Google Scholar 

  20. Chaudhary G, Ghosh A, Kang JG, Braun PV, Ewoldt RH, Schweizer KS (2021) Linear and nonlinear viscoelasticity of concentrated thermoresponsive microgel suspensions. J Colloid Interface Sci 601:886–898

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Kim YC, Min H, Hong S, Wang M, Sun H, Park IK, Choi HR, Koo JC, Moon H, Kim KJ, Suhr J, Do Nam J (2017) Multi-step cure kinetic model of ultra-thin glass fiber epoxy prepreg exhibiting both autocatalytic and diffusion-controlled regimes under isothermal and dynamic-heating conditions. Korea Aust Rheol J 29:157–162

    Article  Google Scholar 

  22. Chen T, Zhang Y, Xu W (2016) Single-molecule nanocatalysis reveals catalytic activation energy of single nanocatalysts. J Am Chem Soc 138:12414–12421

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a Research Grant of Pukyong National University (2023 year; C-D-2023-1624-0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngho Eom.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.J., Thanakorn, Y., Jung, D.E. et al. Rheological study on lower critical solution temperature behavior of organo-soluble cyano-substituted p-aramid in isotropic phase. Korea-Aust. Rheol. J. (2024). https://doi.org/10.1007/s13367-024-00088-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13367-024-00088-z

Keywords

Navigation