Skip to main content
Log in

The Effects of Chromium on the High Temperature Corrosion of Ni–Cr Alloys Exposed to Calcium Sulfate

  • Original Paper
  • Published:
High Temperature Corrosion of Materials Aims and scope Submit manuscript

Abstract

Calcium- and sulfur-rich deposits have been linked to failure of turbine components as a consequence of high temperature exposures (> 1000 °C). There are only limited studies on the effects of these deposits on the degradation behavior of turbine alloys. To gain further understanding of this phenomenon, a systematic study was undertaken with model binary nickel–chromium alloys. Three alloys with different chromium contents—low, medium and high—represented by Ni-5Cr, Ni-10Cr and Ni-18Cr, were exposed to CaSO4-deposit-induced corrosion in the 900–1100 °C temperature range. At 1000 and 1100 °C, the decomposition of CaSO4 (either by decomposition to CaO and SO3 or by reacting with Cr2O3) led to the formation of calcium chromates and chromium sulfides. At the lower temperature, 900 °C, the limited decomposition of CaSO4 allowed the formation of a continuous Cr2O3 scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G. H. Meier, Oxidation of Metals 98, 1 (2022).

    Article  CAS  Google Scholar 

  2. R. A. Rapp, Corrosion Science 44, 209 (2002).

    Article  CAS  Google Scholar 

  3. F. Pettit, Oxidation of Metals 76, 1 (2011).

    Article  CAS  Google Scholar 

  4. R. A. Rapp and N. Otsuka, The role of chromium in the hot corrosion of metals. ECS Transactions 16, 271 (2009).

    Article  CAS  Google Scholar 

  5. K. L. Luthra, Metallurgical Transactions A 13, 1843 (1982).

    Article  ADS  CAS  Google Scholar 

  6. K. L. Luthra, Metallurgical Transactions A. 13, 1853 (1982).

    Article  ADS  CAS  Google Scholar 

  7. D. A. Shifler, Proceedings of ASME Turbo Expo 1, 1 (2017).

    Google Scholar 

  8. M. B. Krisak, B. I. Bentley, A. W. Phelps, and T. C. Radsick, Journal of Propulsion and Power 33, 697 (2017).

    Article  CAS  Google Scholar 

  9. M. Krisak, Environmental degradation of nickel-based superalloys due to gypsiferous desert dusts. PhD Thesis, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio. 2015.

  10. K. J. Meisner and E. J. Opila, Oxidation of Metals 94, 301 (2020).

    Article  CAS  Google Scholar 

  11. J. L. Smialek, F. A. Archer, and R. G. Garlick, Journal of Materials 46, 39 (1994).

    CAS  Google Scholar 

  12. J. L. Smialek, F. A. Archer, and R. G. Garlick, International Society for the Advancement of Material and Process Engineering Metals and Metals Processing Conference 3, 63 (1992).

    Google Scholar 

  13. R. I. Webster and E. J. Opila, Journal of Non-Crystalline Solids 584, 1 (2022).

    Article  Google Scholar 

  14. R. Kumer, S. Rommel, C. Jiang, and E. H. Jordan, Surface and Coatings Technology 432, 1 (2022).

    Google Scholar 

  15. K. T. Chiang, G. H. Meier, and R. A. Perkins, Journal of Materials for Energy Systems 6, 71 (1984).

    Article  CAS  Google Scholar 

  16. N. Ury, K. Sanchez, and V. A. Ravi, JOM 75, 5451 (2023).

    Article  ADS  CAS  Google Scholar 

  17. T. Gheno, G. H. Meier, and B. Gleeson, Oxidation of Metals 84, 185 (2015).

    Article  CAS  Google Scholar 

  18. T. Gheno and B. Gleeson, Oxidation of Metals 86, 385 (2016).

    Article  CAS  Google Scholar 

  19. T. Gheno and B. Gleeson, Oxidation of Metals 87, 249 (2017).

    Article  CAS  Google Scholar 

  20. V. Prostakova, J. Chen, E. Jak, and S. A. Decterov, Calphad Comput. Coupling Phase Diagrams Thermochem. 37, 1 (2012). https://doi.org/10.1016/j.calphad.2011.12.009.

    Article  CAS  Google Scholar 

  21. K. Min-seok, Thermodynamic Optimization of System containing Cr6+ oxides. Masters Thesis, Seoul National University, Seoul, South Korea. 2021.

  22. A. Kaiser, B. Sommer, and E. Woermann, Journal of the American Ceramic Society 75, 1463 (1992).

    Article  CAS  Google Scholar 

  23. H. Akuezue, Calcium sulfate-induced accelerated corrosion. M. S. Thesis, Lawrence Berkely Laboratory, University of California, Berkely. 1979.

  24. S. Choi and J. Stringer, Corrosion Science 28, 839 (1988).

    Article  CAS  Google Scholar 

  25. P. Brennan, Environmental factors affecting CaO and CaSO4-induced degradation of second-generation nickel-based superalloys. PhD Thesis, University of Pittsburgh, Pittsburgh. 2020.

  26. N. J. Calos, C. H. L. Kennard, A. K. Whittaker, and R. L. Davis, Journal of Solid State Chemistry 119, 1 (1995).

    Article  ADS  CAS  Google Scholar 

  27. W. M. Swift, A. F. Panek, G. W. Smith, G. J. Vogel, A. A. Janke, Decomposition of Calcium Sulfate: a Review of the Literature. Report ANL-76–122, Argonne National Laboratory, Argonne, Illinois. 1976.

  28. M. W. Chase Jr, NIST-JANAF thermochemical tables. Washington, DC: New York: American Chemical Society; American Institute of Physics for the National Institute of Standards and Technology. 1998.

  29. C. W. Bale, E. Belesle, P. Chartrand, et al., Calphad 54, 35 (2010).

    Article  Google Scholar 

  30. A. Nicolas, E. Aublant, E. Feulvarch, and K. Wolski, Defect and Diffusion Forum 323, 295 (2012).

    Article  Google Scholar 

  31. C. Giggins and F. Pettit, Transactions of the Metallurgical Society of AIME 245, 2495 (1969).

    CAS  Google Scholar 

  32. N. Birks, G. Meier, and F. Pettit, High Temperature Oxidation of Metals, (Cambridge University Press, New York, 2006).

    Book  Google Scholar 

  33. C. Wagner, Zeitschrift für Elektrochemie 63, 772 1959).

    CAS  Google Scholar 

  34. I. Katayam, T. Nakanishi, N. Kemori, and Z. Kozuka, Materials Transactions 28, 558 1987).

    Google Scholar 

  35. J. Goebel and F. Pettit, Metallurgical Transactions 1, 3421 (1970).

    Article  ADS  CAS  Google Scholar 

  36. M. Wootton and N. Birks, Corrosion Science 12, 829 (1972).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding for this project from the Office of Naval Research (ONR Award # N00014-21-1-2751; Mr. Anthony C. Smith, Sr., Director, DoN HBCU/MI Program, and Dr. David Shifler, Technical SME/POC) is gratefully acknowledged. The authors thank Regina Dilig, Ulus Ekerman, Harjot Singh, Karla Sanchez, Logan Gallegos and Lily Pelayo for their contributions.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed as follows: NU carried out corrosion experiments, XRD, optical and SEM, data analysis and manuscript writing; VR supervised the work and was responsible for experimental design, project support, discussions and guidance, manuscript writing, review and editing.

Corresponding author

Correspondence to Vilupanur Ravi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6614 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ury, N., Ravi, V. The Effects of Chromium on the High Temperature Corrosion of Ni–Cr Alloys Exposed to Calcium Sulfate. High Temperature Corrosion of mater. (2024). https://doi.org/10.1007/s11085-024-10232-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11085-024-10232-3

Keywords

Navigation