Skip to main content
Log in

Determination of the Eutectic to Peritectic Fold Transition in the Cu(Ni)–Fe–S System by Directional Crystallization of Melts

  • PHYSICOCHEMICAL ANALYSIS OF INORGANIC SYSTEMS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

This paper is concerned with theoretical analysis of the quasi-equilibrium directional crystallization of three-component melts. How the phase composition changes at each site of the sample and how the phase compositions change for various types of phase reactions are considered. It is shown that the eutectic reaction can change to a peritectic reaction as temperature lowers during directional crystallization. A 29.96 Fe + 21.55 Cu + 2.01 Ni + 46.49 S (at %) melt was directionally crystallized. Since nickel is present in the ingot in the form of impurities dissolved in the phases of the Cu–Fe–S system, the behavior of the melt belonging to this three-component system could be involved in data interpretation. As a result, a sample has been obtained with three zones changing one another: single-phase FezS1 ± δ (Poss), a Poss + (Cu,Fe)1 + xS (Iss) two-phase eutectic mixture, and then single-phase Iss. The average composition of the solid phase changes from one discrete value to another in going to the next zone, while the melt and solid solutions in the neighboring zones have their compositions changing continuously. These results are consistent with theoretical ideas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. Such a reaction is frequently referred to as a cotectic reaction [29].

REFERENCES

  1. P. P. Fedorov, Russ. J. Phys. Chem. 73, 1381 (1999).

    Google Scholar 

  2. P. P. Fedorov, Russ. J. Inorg. Chem. 66, 550 (2021). https://doi.org/10.1134/S0036023621040100

    Article  CAS  Google Scholar 

  3. K. A. Khaldoyanidi, Phase Diagrams of Heterogeneous Systems with Transformations, Ed. by F. A. Kuznetsov (INKh SO RAN, Novosibirsk, 2004) [in Russian].

  4. V. A. Prostakova, M. O. Lomako, A. L. Voskov, et al., Vestnik MGU, Ser. Khim. 2, 81 (2010).

    Google Scholar 

  5. A. L. Voskov, N. A. Kovalenko, I. B. Kutsenok, and I. A. Uspenskaya, Russ. J. Phys. Chem. 93, 1849 (2019).

    Article  CAS  Google Scholar 

  6. V. I. Lutsyk, Analysis of the Liquidus Surface of Ternary Systems, Ed. by M. V. Mokhosoev (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  7. V. P. Vorob’eva, V. I. Lutsyk, and M. D. Parfenova, Russ. J. Inorg. Chem. 68, 77 (2023). https://doi.org/10.1134/S0036023622601921

    Article  Google Scholar 

  8. V. I. Lutsyk, V. P. Vorob’eva, and O. G. Sumkina, Zh. Neorg. Khim. 45, 861 (2000).

    CAS  Google Scholar 

  9. V. I. Kosyakov and E. F. Sinyakova, Russ. J. Inorg. Chem. 62, 576 (2017). https://doi.org/10.1134/S003602361705014X

    Article  CAS  Google Scholar 

  10. V. I. Kosyakov and V. A. Shestakov, Russ. J. Inorg. Chem. 62, 795 (2017). https://doi.org/10.1134/S0036023617060122

    Article  CAS  Google Scholar 

  11. V. I. Kosyakov, V. A. Shestakov, and E. V. Grachev, Russ. J. Phys. Chem. 93, 2131 (2019). https://doi.org/10.1134/S0044453719110165

    Article  CAS  Google Scholar 

  12. V. I. Kosyakov, Russ. J. Phys. Chem. 93, 1635 (2019). https://doi.org/10.1134/S0036024419090085

    Article  CAS  Google Scholar 

  13. V. A. Shestakov, E. V. Grachev, and V. I. Kosyakov, Russ. J. Phys. Chem. 94 A, 1083 (2020). https://doi.org/10.1134/S0036024420060205

  14. V. A. Shestakov and V. I. Kosyakov, Russ. J. Inorg. Chem. 66, 404 (2021). https://doi.org/10.1134/S0036023621030165

    Article  Google Scholar 

  15. V. A. Shestakov and E. V. Grachev, Russ. J. Inorg. Chem. 67, 488 (2022). https://doi.org/10.1134/S0036023622040179

    Article  CAS  Google Scholar 

  16. V. I. Kosyakov, Ya. M. Buzhdan, and V. A. Shestakov, Informal Mathematical Models in Chemical Thermodynamics (Nauka, Novosibirsk, 1991) [in Russian].

    Google Scholar 

  17. V. I. Kosyakov, Sibir. Khim. Zh. 3, 56 (1993).

    Google Scholar 

  18. V. I. Kosyakov, Russ. Geol. Geophys. 39, 1245 (1998). https://doi.org/10.1016/j.rgg.2010

    Article  Google Scholar 

  19. V. I. Kosyakov and E. F. Sinyakova, Russ. J. Inorg. Chem. 49, 1073 (2004).

    Google Scholar 

  20. V. I. Kosyakov and E. F. Sinyakova, Russ. J. Inorg. Chem. 56, 779 (2011). https://doi.org/10.1134/S0036023611050135

    Article  CAS  Google Scholar 

  21. V. I. Kosyakov and E. F. Sinyakova, Inorg. Mater. 47, 660 (2011). https://doi.org/10.1134/S002016851105013X

    Article  CAS  Google Scholar 

  22. V. I. Kosyakov and E. F. Sinyakova, J. Therm. Anal. Calorim. 115, 511 (2014). https://doi.org/10.1007/s10973-013-3206-0

    Article  CAS  Google Scholar 

  23. E. F. Sinyakova and V. I. Kosyakov, J. Therm. Anal. Calorim. 117, 1085 (2014). https://doi.org/10.1007/s10973-017-6215-6

    Article  CAS  Google Scholar 

  24. V. I. Kosyakov and E. F. Sinyakova, J. Therm. Anal. Calorim. 129, 623 (2017). https://doi.org/10.1007/s10973-017-6215-6

    Article  CAS  Google Scholar 

  25. E. F. Sinyakova, V. I. Kosyakov, K. A. Kokh, and E. A. Naumov, Russ. Geol. Geophys. 60, 1257 (2019). https://doi.org/10.15372/RGG2019091

    Article  ADS  Google Scholar 

  26. V. I. Kosyakov, E. F. Sinyakova, and K. A. Kokh, J. Therm. Anal. Calorim. 139, 3377 (2020). https://doi.org/10.1007/s10973-019-08701-y

    Article  CAS  Google Scholar 

  27. I. D. Ryabchikov, Thermodynamic Analysis of the Behavior of Small Elements during Crystallization of Silicate Melts (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  28. V. Ya. Anosov, M. I. Ozerova, and Yu. Ya. Fialkov, Fundamentals of Physicochemical Analysis (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  29. E. G. Ehlers, The Interpretation of Geological Phase Diagrams (W. H. Freeman & Co. San Francisco, I972) [in Russian].

  30. D. A. Petrov, Ternary Systems (Nauka, Moscow, 1953) [in Russian].

    Google Scholar 

  31. V. I. Kosyakov and E. F. Sinyakova, Russ. Geol. Geophys. 53, 861 (2012). https://doi.org/10.1016/j.rgg.2012.07.003

    Article  ADS  Google Scholar 

  32. V. I. Kosyakov and E. F. Sinyakova, Geochem. Int. 43, 372 (2005).

    Google Scholar 

  33. B. A. Alabuzhev, Experimental Studies in Mineralogy (1968–1969) (Izd. Inst. Geol. Geofiz., Novosibirsk, 1969) [in Russian].

    Google Scholar 

  34. Yu. G. Lavrent’ev, N. S. Karmanov, and L. V. Usova, Russ. Geol. Geophys. 56, 1154 (2015). https://doi.org/10.1016/j.rgg.2015.07.006

    Article  ADS  Google Scholar 

  35. H. Schlegel and A. Sehüller, Z. Metall. 43, 421 (1952).

  36. J. W. Greig, E. Jensen, and H. E. Merwin, Carnegie Inst. Wash. 54, 129 (1955).

    Google Scholar 

  37. V. I. Kosyakov, Russ. J. Inorg. Chem. 53, 946 (2008). https://doi.org/10.1134/S0036023608060223

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are deeply grateful to Viktor I. Kosyakov, who passed away untimely, for his invaluable contribution to the development of the theory of specific features of complex systems and for providing an option for the experimental verification of this theory.

The authors are also grateful to E. N. Nigmatulina, the analyst at the Shared Facilities Center for Multielement and Isotopic Studies at the Siberian Branch of the Russian Academy of Sciences, for help in conducting phase microanalysis.

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation as part of Government Assignment No. 122041400237-8 to the Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, and part of Government Assignment No. 122041400031-2 to the Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. F. Sinyakova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Fedorova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinyakova, E.F., Vasilyeva, I.G. Determination of the Eutectic to Peritectic Fold Transition in the Cu(Ni)–Fe–S System by Directional Crystallization of Melts. Russ. J. Inorg. Chem. (2024). https://doi.org/10.1134/S0036023623602660

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S0036023623602660

Keywords:

Navigation