Skip to main content
Log in

Phase Equilibria in Quasi-Ternary System Li2O–Mn2O3–Eu2O3

  • PHYSICOCHEMICAL ANALYSIS OF INORGANIC SYSTEMS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Using X-ray powder diffraction and thermal analysis (TG–DSC), samples of the quasi-ternary system Li2O–Mn2O3–Eu2O3, synthesized from precursors subjected to preliminary mechanochemical activation and annealed in air at 700–1100°C, have been studied. An assessment is given of the possibility of Mn for Eu substitution in the spinel LiMn2 – xEuxO4. A subsolidus isobaric diagram of the Li2O–Mn2O3–Eu2O3 system was constructed. Using models of polythermal sections LiEuO2–LiMnO2 and LiEuO2–LiMn2O4, a projection of the liquidus surface of the quasi-ternary system Li2O–Mn2O3–Eu2O3 was obtained. The temperatures of eutectic and peritectic equilibria involving three crystalline phases and a melt have been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. M. M. Thackeray and K. Amine, Nature Energy 6, 933 (2021). https://doi.org/10.1038/s41560-021-00860-3

    Article  ADS  CAS  Google Scholar 

  2. J. B. Goodenough, Nobel Lecture 8, 165 (2019).

    Google Scholar 

  3. A. R. Armstrong and P. G. Bruce, Nature 381, 499 (1996). https://doi.org/10.1038/381499a0

    Article  ADS  CAS  Google Scholar 

  4. M. M. Thackeray, C. S. Johnson, J. T. Vaughey, et al., J. Mater. Chem. 15, 2257 (2005). https://doi.org/10.1039/b417616m

    Article  CAS  Google Scholar 

  5. Y. Xie, Y. Xu, L. Yan, et al., Solid State Ionics 176, 2563 (2005). https://doi.org/10.1016/j.ssi.2005.06.022

    Article  CAS  Google Scholar 

  6. Y. Xie, R. Yang, L. Yan, et al., J. Power Sources 168, 272 (2007). https://doi.org/10.1016/j.jpowsour.2007.01.019

    Article  ADS  CAS  Google Scholar 

  7. C. Feng, H. Tang, K. Zhang, and J. Sun, Mater. Chem. Phys. 80, 573 (2003). https://doi.org/10.1016/S0254-0584(03)00115-9

    Article  CAS  Google Scholar 

  8. K. M. Elsabawy, M. M. Abou-Sekkina, and E. C. Elmetwaly, Solid State Sci. 13, 601 (2011). https://doi.org/10.1016/j.solidstatesciences.2010.12.033

    Article  ADS  CAS  Google Scholar 

  9. Y. Tian, X. Kang, L. Liu, et al., J. Rare Earths 26, 279 (2008). https://doi.org/10.1016/S1002-0721(08)60081-2

    Article  Google Scholar 

  10. D. Arumugam, G. Paruthimal Kalaignan, and P. Manisankar, Solid State Ionics 179, 580 (2008). https://doi.org/10.1016/j.ssi.2008.04.010

    Article  CAS  Google Scholar 

  11. H.-L. Zhang and R. Ren, and J. An, Mater. Sci. Forum 686, 716 (2011). https://doi.org/10.4028/www.scientific.net/MSF.686.716

  12. M. Michalska, D. A. Ziókowska, J. B. Jasiński, et al., Electrochim. Acta 276, 37 (2018). https://doi.org/10.1016/j.electacta.2018.04.165

    Article  CAS  Google Scholar 

  13. M. Michalska, B. Hamankiewicz, D. Ziółkowska, et al., Electrochim. Acta 136, 286 (2014). https://doi.org/10.1016/j.electacta.2014.05.108

    Article  CAS  Google Scholar 

  14. H.-W. Ha, N. J. Yun, and K. Kim, Electrochim. Acta 52, 3236 (2007). https://doi.org/10.1016/j.electacta.2006.09.066

    Article  CAS  Google Scholar 

  15. H. Sun, Y. Chen, C. Xu, et al., J. Solid State Electrochem. 16, 1247 (2012). https://doi.org/10.1007/s10008-011-1514-5

    Article  CAS  Google Scholar 

  16. R. Sighal, S. R. Das, M. S. Tomas, et al., J. Power Sources 164, 857 (2007). https://doi.org/10.1016/j.jpowsour.2006.09.098

    Article  ADS  CAS  Google Scholar 

  17. S. T. Yang, J. H. Jia, L. Ding, and M. C. Zhang, Electrochim. Acta 48, 569 (2003). https://doi.org/10.1016/S0013-4686(02)00726-0

    Article  CAS  Google Scholar 

  18. A. M. Khedr, M. M. Abou-Sekkina, and F. G. El-Metwaly, J. Electronic. Mater. 42, 1275 (2013). https://doi.org/10.1007/s11664-013-2588-x

    Article  ADS  CAS  Google Scholar 

  19. S. R. K. Balaji, D. Muharasu, S. Shanmugan, et al., Ionics 16, 351 (2010). https://doi.org/10.1007/s11581-009-0400-y

    Article  CAS  Google Scholar 

  20. M. M. Abou-Sekkina, A. M. Khedr, and F. G. El-Metwaly, Chem. Mater. Res 3, 15 (2013).

    Google Scholar 

  21. D. K. Lee, S. C. Han, D. Ahn, et al., Appl. Mater. Interfaces 4, 6842 (2012). https://doi.org/10.1021/am302003r

    Article  CAS  Google Scholar 

  22. H. W. Liu and K. L. Zhang, Mater. Lett. 58, 3049 (2004). https://doi.org/10.1016/j.matlet.2004.05.040

    Article  CAS  Google Scholar 

  23. H. W. Liu and K. L. Zhang, Inorg. Mater. 61, 646 (2005). https://doi.org/10.1007/s10789-005-0183-0

    Article  CAS  Google Scholar 

  24. S. C. Han, S. P. Singh, Y.-H. Hwang, et al., J. Electrochem. Soc. 159, A1867 (2012). https://doi.org/10.1149/2.009212jes

    Article  CAS  Google Scholar 

  25. S. Balaji, T. Mani Chadran, and D. Muharasu, Ionics 18, 549 (2012). https://doi.org/10.1007/s11581-011-0650-3

    Article  CAS  Google Scholar 

  26. P. Ram, A. Gören, S. Ferdov, et al., New J. Chem. 40, 6244 (2016). https://doi.org/10.1039/c6nj00198j

    Article  CAS  Google Scholar 

  27. Z. Su, M.-W. Xu, S.-H. Ye, and Y.-L. Wang, Acta Phys. Chim. Sin. 25, 1232 (2009). https://doi.org/10.3866/PKU.WHXB20090629

    Article  CAS  Google Scholar 

  28. G. Zhao, J. He, C. Zhang, et al., Rare Metal Mater. Eng. (China) 37, 709 (2008).

    CAS  Google Scholar 

  29. Z.-H. Zhou and T.-Q. Mei, Modern Chem. Ind. (China) 29, 246 (2009).

    Google Scholar 

  30. A. Yuzer and O. M. Ozkendir, J. Electron. Mater. 45, 989 (2016). https://doi.org/10.1007/s11664-015-4256-9

    Article  ADS  CAS  Google Scholar 

  31. J. M. Paulsen and J. R. Dahn, Chem. Mater. 11, 3065 (1999). https://doi.org/10.1021/cm9900960

    Article  CAS  Google Scholar 

  32. G. A. Buzanov, G. D. Nipan, K. Yu. Zhizhin, and N. T. Kuznetsov, Russ. J. Inorg. Chem. 62, 551 (2017). https://doi.org/10.1134/S0036023617050059

    Article  CAS  Google Scholar 

  33. G.A. Buzanov and G.D. Nipan, Russ. J. Inorg. Chem. 68, 1816 (2023). https://doi.org/10.1134/S0036023623602337

  34. V. F. Balakirev and Yu. V. Golikov, Inorg. Mater. 39, Suppl. 1, S1 (2003). https://doi.org/10.1023/A:1024115817536

    Article  CAS  Google Scholar 

  35. A. M. Yankin, L. B. Vedmid’, and O. M. Fedorova, Russ. J. Phys. Chem. 86, 345 (2012). https://doi.org/10.1134/S003602441203034X

    Article  CAS  Google Scholar 

  36. V. F. Balakirev, L. B. Vedmid’, and O. M. Fedorova, Russ. J. Inorg. Chem. 67, 868 (2022). https://doi.org/10.1134/S0036023622060043

    Article  CAS  Google Scholar 

  37. G. A. Buzanov and G. D. Nipan, Russ. J. Inorg. Chem. 67, 1035 (2022). https://doi.org/10.1134/S0036023622070051

    Article  CAS  Google Scholar 

  38. H. Bärnighausen, Z. Anorg. Allg. Chem. 374, 201 (1970). https://doi.org/10.1002/zaac.19703740209

    Article  Google Scholar 

  39. T. Nyokong and J. E. Greedan, Inorg. Chem. 21, 398 (1982). https://doi.org/10.1021/ic00131a071

    Article  CAS  Google Scholar 

  40. C. Barad, G. Kimmel, H. Hayun, et al., Materials 13, 2201 (2020). https://doi.org/10.3390/ma13092201

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. A. Waintal and M. Gondrand, Mater. Res. Bull. 2, 889 (1967). https://doi.org/10.1016/0025-5408(67)90099-2

    Article  CAS  Google Scholar 

  42. E. K. Kazenas and Yu. V. Tsvetkov, Evaporation of Oxides (Nauka, Moscow, 1997) [in Russian].

    Google Scholar 

  43. A. N. Grundy, B. Hallstedt, and L. J. Gauckler, J. Phase Equilib. 24, 21 (2003). https://doi.org/10.1007/s11669-003-0004-6

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Elemental analysis (ICP-MS) was performed using the scientific equipment of the Research Chemical Analytical Center of the National Research Center “Kurchatov Institute.”

Funding

The study was supported by the Russian Science Foundation (project no. 23-23-00576).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Buzanov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Avdeeva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

11502_2024_3199_MOESM1_ESM.pdf

Fig. S1. X-ray powder diffraction patterns of samples of the LiEuO2–Li2MnO3 section, 1100°C, \({{p}_{{{{{\text{O}}}_{2}}}}}\) = 21 kPa.

Fig. S2. X-ray powder diffraction patterns of samples of the LiEuO2–LiMnO2 section, 1100°C, \({{p}_{{{{{\text{O}}}_{2}}}}}\) = 21 kPa.

Fig. S3. X-ray powder diffraction patterns of samples of the LiEuO2–LiMn2O4 section, 1000°C, \({{p}_{{{{{\text{O}}}_{2}}}}}\) = 21 kPa.

Fig. S4. X-ray powder diffraction patterns of samples of the LiEuO2–LiMn2O4 section, 1100°C, \({{p}_{{{{{\text{O}}}_{2}}}}}\) = 21 kPa.

Fig. S5. Substitution of Mn for Eu in spinel LiMn2O4, 700–1000°C, \({{p}_{{{{{\text{O}}}_{2}}}}}\) = 21 kPa.

Fig. S6. TG–DSC data for samples of the LiEuO2–Li2MnO3 section obtained at 1100°C in air.

Fig. S7. TG–DSC data for samples of the LiEuO2–LiMnO2 section obtained at 1100°C in air.

Fig. S8. TG–DSC data for samples of the LiEuO2–LiMn2O4 section obtained at 1100°C in air.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buzanov, G.A., Nipan, G.D. Phase Equilibria in Quasi-Ternary System Li2O–Mn2O3–Eu2O3. Russ. J. Inorg. Chem. (2024). https://doi.org/10.1134/S0036023623602829

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S0036023623602829

Keywords:

Navigation