Skip to main content
Log in

Revised Phase Diagram of the MnSe–Ga2Se3 System

  • PHYSICOCHEMICAL ANALYSIS OF INORGANIC SYSTEMS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Phase equilibria in the MnSe–Ga2Se3 system were re-investigated by differential thermal analysis (DTA) and X-ray powder diffraction (XRD), and a phase diagram was constructed, somewhat differing from that presented earlier in the literature. We found that the system featured the formation of an intermediate phase (γ) with a wide (47–61 mol % Ga2Se3) homogeneity extent. Extensive (~30 mol %) Ga2Se3-base solid solutions were also found. The γ phase undergoes γ′ ↔ γ polymorphic transformation at 1183–1193 K, the temperature depending on the composition. The γ′ high-temperature phase has a minimum melting point at 1205 K and 55 mol % Ga2Se3, and it is in peritectic equilibrium with terminal solid solutions. The tetragonal lattice parameters of the γ phase containing 50 and 60 mol % Ga2Se3 were determined based on X-ray powder diffraction data. The previously indicated ternary compound Mn2Ga2Se5 was not confirmed to exist. A comparative analysis of the results against the related literature was carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. K. Hyunjung, A. P. Tiwari, E. Hwang, et al., Adv. Sci. 5, 1800068 (2018). https://doi.org/10.1002/advs.201800068

    Article  CAS  Google Scholar 

  2. C. Xia and J. Li, J. Semicond. 37, 051001 (2016). https://doi.org/10.1088/1674-4926/37/5/051001

  3. P. Wyżga, I. Veremchuk, M. Bobnar, et al., Z. Anorg. Allg. Chem. 646, 1091 (2020). https://doi.org/10.1002/zaac.202000014

    Article  CAS  Google Scholar 

  4. N. Karthikeyan, G. Aravindsamy, P. Balamurugan, et al., Mater. Res. Innov. 22, 278 (2018). https://doi.org/10.1080/14328917.2017.1314882

    Article  CAS  Google Scholar 

  5. A. Bose, R. Banerjee, and A. Narayan, Condens. Matter 2, 1 (2022). https://arxiv.org/pdf/2202.03317v2.pdf.

  6. J. Yang, Z. Zhou, J. Fang, et al., Appl. Phys. Lett. 115, 222101 (2019). https://doi.org/10.1063/1.5126233

    Article  ADS  CAS  Google Scholar 

  7. Y. Hwang, J. Choi, Y. Ha, et al., Curr. Appl. Phys. 20, 212 (2020). https://doi.org/10.1016/j.cap.2019.11.005

    Article  ADS  Google Scholar 

  8. V. Sagredo, T. E. Torres, G. E. Delgado, et al., Rev. Mex. F 65, 14 (2019). www.scielo.org.mx/scielo.php?script= sci_arttext&pid=S0035-001X2019000100014.

  9. B. Zhang, Y. Liu, H. Zhu, et al., Environ. Sci. Pollut. Res. 30, 13438 (2023). https://doi.org/10.1007/s11356-022-22929-6

    Article  CAS  Google Scholar 

  10. S. A. Pauliukavets, I. V. Bychek, and M. P. Patapovich, Inorg. Mater: Appl. Res. 9, 207 (2018). https://doi.org/10.1134/S2075113318020223

    Article  Google Scholar 

  11. H. Kim, X. Liu, M. Kim, et al., Chem. Mater. 33, 164 (2021). https://doi.org/10.1021/acs.chemmater.0c03146

    Article  CAS  Google Scholar 

  12. S. V. Eremeev, M. M. Otrokov, and E. V. Chulkov, Nano Lett. 18, 6521 (2018). https://doi.org/10.1021/acs.nanolett.8b03057

    Article  ADS  CAS  PubMed  Google Scholar 

  13. M. M. Otrokov, I. I. Klimovskikh, H. Bentmann, et al., Nature 576, 416 (2019). https://doi.org/10.1038/s41586-019-1840-9

    Article  ADS  CAS  PubMed  Google Scholar 

  14. L. Haoyu, H. Yiya, G. Qixun, et al., J. Phys. D: Appl. Phys. 56, 045302 (2023). https://doi.org/10.1088/1361-6463/aca61e

    Article  ADS  CAS  Google Scholar 

  15. I. I. Klimovskikh, M. M. Otrokov, D. Estyunin, et al., npj Quantum Mater. 5, 54 (2020). https://doi.org/10.1038/s41535-020-00255-9

  16. D. A. Estyunin, I. I. Klimovskikh, A. M. Shikin, et al., APL Mater. 8, 021105 (2020). https://doi.org/10.1063/1.5142846

    Article  ADS  CAS  Google Scholar 

  17. R. C. Walko, T. Zhu, A. J. Bishop, et al., Phys. E 143, 115391 (2022). https://doi.org/10.1016/j.physe.2022.115391

    Article  CAS  Google Scholar 

  18. Y. Yonghao, W. Xintong, L. Hao, et al., Nano Lett. 20, 3271 (2020). https://doi.org/10.1021/acs.nanolett.0c00031

    Article  ADS  CAS  Google Scholar 

  19. L. Zhou, Z. Tan, D. Yan, et al., Phys. Rev. B: Condens. Matter 102, 085114 (2020). https://doi.org/10.1103/PhysRevB.102.085114

    Article  ADS  CAS  Google Scholar 

  20. K. F. Garrity, S. Chowdhury, and F. M. Tavazza, Phys. Rev. Mater. 5, 024207 (2021). https://doi.org/10.1103/PhysRevMaterials.5.024207

    Article  CAS  Google Scholar 

  21. D. Ovchinnikov, X. Huang, Z. Lin, et al., Nano Lett. 21, 2544 (2021). https://doi.org/10.1021/acs.nanolett.0c05117

    Article  ADS  CAS  PubMed  Google Scholar 

  22. P. Swatek, Y. Wu, and L. L. Wang, Phys. Rev. B: Condens. Matter 101, 161109 (2020). https://doi.org/10.1103/PhysRevB.101.161109

    Article  ADS  CAS  Google Scholar 

  23. T. Zhu, A. J. Bishop, T. Zhou, et al., Nano Lett. 21, 5083 (2021). https://doi.org/10.1021/acs.nanolett.1c00141

    Article  ADS  CAS  PubMed  Google Scholar 

  24. M. Garnica, M. Otrokov, P. C. Aguilar, et al., npj Quantum Mater. 7, 7 (2022). https://doi.org/10.1038/s41535-021-00414-6

  25. A. Sharan, M. Sajjad, D. J. Singh, et al., Phys. Rev. Mater. 6, 094005 (2022). https://doi.org/10.1103/PhysRevMaterials.6.094005

    Article  CAS  Google Scholar 

  26. A. V. Tarasov, T. P. Makarova, D. A. Estyunin, et al., Symmetry 15, 469 (2023). https://doi.org/10.3390/sym15020469

    Article  ADS  CAS  Google Scholar 

  27. H. Djieutedjeu, J. S. Lopez, R. Lu, et al., J. Am. Chem. Soc. 141, 9249 (2019). https://doi.org/10.1021/jacs.9b01884

    Article  CAS  PubMed  Google Scholar 

  28. I. Levy, C. Forrester, X. Ding, et al., Sci. Rep. 13, 7381 (2023). https://doi.org/10.1038/s41598-023-34585-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. N. A. Moroz, J. S. Lopez, H. Djieutedjeu, et al., Chem. Mater. 28, 8570 (2016). https://doi.org/10.1021/acs.chemmater.6b03293

    Article  CAS  Google Scholar 

  30. I. Levy, C. Forrester, H. Deng, et al., Cryst. Growth Des. 22, 3007 (2022). https://doi.org/10.1021/acs.cgd.1c01453

    Article  CAS  Google Scholar 

  31. Y. Liu, Ch. Kang, E. Stavitski, et al., Phys. Rev. 97, 155202 (2018). https://doi.org/10.1103/PhysRevB.97.155202

    Article  CAS  Google Scholar 

  32. M. B. Babanly, E. V. Chulkov, Z. S. Aliev, et al., Russ. J. Inorg. Chem. 62, 1703 (2017). https://doi.org/10.1134/S0036023617130034

    Article  CAS  Google Scholar 

  33. M. B. Babanly, L. F. Mashadiyeva, D. M. Babanly, et al., Russ. J. Inorg. Chem. 64, 1649 (2019). https://doi.org/10.1134/S0036023619130035

    Article  CAS  Google Scholar 

  34. S. Z. Imamaliyeva, D. M. Babanly, V. A. Qasymov, et al., Russ. J. Inorg. Chem. 66, 558 (2021). https://doi.org/10.1134/S0036023621040124

    Article  CAS  Google Scholar 

  35. F. M. Mammadov, I. R. Amiraslanov, S. Z. Imamaliyeva, et al., J. Phase Equilib. Diffus. 40, 787 (2019). https://doi.org/10.1007/s11669-019-00768-2

    Article  CAS  Google Scholar 

  36. F. M. Mamedov, D. M. Babanly, I. R. Amiraslanov, et al., Russ. J. Inorg. Chem. 65, 1747 (2020). https://doi.org/10.1134/S0036023620110121

    Article  Google Scholar 

  37. F. M. Mammadov, I. R. Amiraslanov, Y. R. Aliyeva, et al., Acta Chim. Slovenica 66, 466 (2019). https://doi.org/10.17344/acsi.2019.4988

    Article  CAS  Google Scholar 

  38. F. M. Mammadov, D. M. Babanly, I. R. Amiraslanov, et al., Russ. J. Inorg. Chem. 66, 1533 (2021). https://doi.org/10.1134/S0036023621100090

    Article  CAS  Google Scholar 

  39. F. M. Mammadov, N. N. Niftiev, Ya. I. Jafarov, et al., Russ. J. Inorg. Chem. 67, 1623 (2022). https://doi.org/10.1134/S0036023622600769

    Article  CAS  Google Scholar 

  40. M. P. Pardo and J. Flahaut, Mater. Res. Bull. 13, 1231 (1978). https://doi.org/10.1016/0025-5408(78)90214-3

    Article  CAS  Google Scholar 

  41. P. K. Babaeva and P. G. Rustamov, Research in Inorganic and Physical Chemistry (Elm, Baku, 1981) [in Russian].

  42. Phase Diagrams of Binary Metal Systems, Ed. by N. R. Lyakishev (Mashinostroenie, Moscow, 2001) [in Russian].

    Google Scholar 

  43. T. B. Massalski, Binary Alloy Phase Diagrams (ASM International, Materials Park, Ohio, 1990).

    Google Scholar 

  44. N. Kh. Abrikosov, V. F. Bankina, L. V. Poretskaya, et al., Semiconductor Chalcogenides and Alloys Based on Them (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  45. M. Cannas, L. Garbato, LehmannA. Geddo, et al., Cryst. Res. Technol. 33, 417 (1998). https://doi.org/10.1002/(SICI)1521-4079(1998)33:3<417::AID-CRAT417>3.0.CO;2-2

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. M. Mammadov.

Ethics declarations

The authors declare that they are not aware of competing financial or other interests or personal relationships that could influence the work presented in this paper.

Additional information

Translated by O. Fedorova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mammadov, F.M., Agayeva, R.M., Amiraslanov, I.R. et al. Revised Phase Diagram of the MnSe–Ga2Se3 System. Russ. J. Inorg. Chem. (2024). https://doi.org/10.1134/S0036023623602611

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S0036023623602611

Keywords:

Navigation