Skip to main content
Log in

Low-Temperature One-Pot Synthesis of Tin(II) Sulfide Nanocrystalline Thin Films

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Photosensitive semiconducting p-type tin(II) sulfide thin films with a band gap of 1.03 ± 0.09 eV have been manufactured in compliance with green chemistry principles using the one-pot approach. To extend the range of sulfidizers suitable for chemical deposition of thin nanostructured SnS films, the efficiency of using sodium thiosulfate solutions has been shown. It has been found that thin SnS films with good adhesion to a dielectric substrate and a coherent scattering region size of ⁓30 nm can be synthesized through hydrolytic decomposition of thiosulfate ions. The conditions for synthesis of SnS have been justified by thermodynamic analysis of ionic equilibria. Quantum-chemical calculations have shown that the p-type conductivity of the synthesized SnS films is most likely due to tin vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. J. R. Brent, D. J. Lewis, T. Lorenz, et al., J. Am. Chem. Soc. 137, 12689 (2015). https://doi.org/10.1021/jacs.5b08236

    Article  CAS  PubMed  Google Scholar 

  2. R. E. Banai, M. W. Horn, and J. R. S. Brownson, 150, 112 (2016). https://doi.org/10.1016/j.solmat.2015.12.001

  3. K. T. R. Reddy, N. K. Reddy, and R. W. Miles, Sol. Energy Mater. Sol. Cells 90, 3041 (2006). https://doi.org/10.1016/j.solmat.2006.06.012

    Article  CAS  Google Scholar 

  4. N. R. Mathews, H. B. M. Anaya, M. A. Cortes-Jacome, et al., J. Electrochem. Soc. 157, H337 (2010). https://doi.org/10.1149/1.3289318

    Article  CAS  Google Scholar 

  5. S. A. Bashkirov, V. F. Gremenok, V. A. Ivanov, et al., Thin Solid Films 520, 5807 (2012). https://doi.org/10.1016/j.tsf.2012.04.030

    Article  ADS  CAS  Google Scholar 

  6. S. Kabouche, B. Bellal, Y. Louafi, et al., Mater. Chem. Phys. 195, 229 (2017). https://doi.org/10.1016/j.matchemphys.2017.04.031

    Article  CAS  Google Scholar 

  7. W. Gao, C. Wu, M. Cao, et al., J. Alloys Compd. 688 Part A, 668 (2016). https://doi.org/10.1016/j.jallcom.2016.07.083

  8. I. N. Odin, M. V. Gapanovich, O. Y. Urkhanov, et al., Inorg. Mater. 57, 3 (2021).

    Article  Google Scholar 

  9. M. V. Gapanovich, V. V. Rakitin, and G. F. Novikov, Russ. J. Inorg. Chem. 67, 1 (2022). https://doi.org/10.1134/S0036023622010041

    Article  CAS  Google Scholar 

  10. A. Schneikart, H.-J. Schimper, A. Klein, et al., J. Phys. D: Appl. Phys. 46, 305109 (2013). https://doi.org/10.1088/0022-3727/46/30/305109

    Article  CAS  Google Scholar 

  11. S. A. Bashkirov, V. F. Gremenok, V. A. Ivanov, et al., Phys. Solid State 54, 2497 (2012). https://doi.org/10.1134/S1063783412120049

    Article  ADS  CAS  Google Scholar 

  12. K. Hartman, J. L. Johnson, M. I. Bertoni, et al., Thin Solid Films 519, 7421 (2011). https://doi.org/10.1016/j.tsf.2010.12.186

    Article  ADS  CAS  Google Scholar 

  13. A. Wangperawong, S. M. Herron, R. R. Runser, et al., Appl. Phys. Lett. 103, 052105 (2013). https://doi.org/10.1063/1.4816746

    Article  ADS  CAS  Google Scholar 

  14. P. Sinsermsuksakul, J. Heo, W. Noh, et al., Adv. Energy Mater. 1, 1116 (2011). https://doi.org/10.1002/aenm.201100330

    Article  CAS  Google Scholar 

  15. F. Ballipinar and A. C. Rastogi, J. Alloys Compd. 728, 179 (2017). https://doi.org/10.1016/j.jallcom.2017.08.295

    Article  CAS  Google Scholar 

  16. T. H. Sajeesh, A. R. Warrier, C. S. Kartha, et al., Thin Solid Films 518, 4370 (2010). https://doi.org/10.1016/j.tsf.2010.01.040

    Article  ADS  CAS  Google Scholar 

  17. K. Takeuchia, M. Ichimuraa, E. Araia, et al., Sol. Energy Mater. Sol. Cells 75, 427 (2003). https://doi.org/10.1016/S0927-0248(02)00192-7

    Article  Google Scholar 

  18. D. Avellaneda, M. T. S. Nair, and P. K. Nair, J. Electrochem. Soc. 155, D517 (2008). https://doi.org/10.1149/1.2917198

    Article  CAS  Google Scholar 

  19. R. Hayakawa and Y. Takano, Thin Solid Films 636, 171 (2017). https://doi.org/10.1016/j.tsf.2017.06.005

    Article  ADS  CAS  Google Scholar 

  20. L. N. Maskaeva, E. A. Fyodorova, A. I. Shemyakina, et al., Butlerov Commun. 37, 1 (2014).

    Google Scholar 

  21. U. Chalapathi, B. Poornaprakash, and S. H. Park, Solar Energy 139, 238 (2016). https://doi.org/10.1016/j.solener.2016.09.046

    Article  ADS  CAS  Google Scholar 

  22. U. Chalapathi, B. Poornaprakash, and S. H. Park, J. Alloys Compd. 689, 938 (2016). https://doi.org/10.1016/j.jallcom.2016.08.066

    Article  CAS  Google Scholar 

  23. V. A. Titov, V. V. Rybkin, V. F. Sokolov, et al., Electronic Materials Science: Laboratory Workshop (Ivan. Gos. Khim.-Tekhnol. Univ., Ivanovo, 2003) [in Russian].

    Google Scholar 

  24. P. Ordejon, E. Artacho, and J. M. Soler, Phys. Rev. 53, R10441 (1996). https://doi.org/10.1103/PhysRevB.53.R10441

    Article  ADS  CAS  Google Scholar 

  25. A. García, N. Papior, A. Akhtar, et al., J. Chem. Phys. 152, 204108 (2020). https://doi.org/10.1063/5.0005077

    Article  ADS  CAS  PubMed  Google Scholar 

  26. V. F. Markov, L. N. Maskaeva, and P. N. Ivanov, Hydrochemical Deposition of Metal Sulfide Films: Modeling and Experiment (Yekaterinburg, UrO RAN, 2006) [in Russian].

    Google Scholar 

  27. Yu. Yu. Lur’e, Handbook of Analytical Chemistry (Khimiya, Moscow, 1971) [in Russian].

    Google Scholar 

  28. G. K. Williamson and W. H. Hall, Acta Metall. 1, 22 (1953). https://doi.org/10.1016/0001-6160(53)90006-6

    Article  CAS  Google Scholar 

  29. H. R. Chandrasekhar, R. G. Humphreys, U. Zwick, et al., Phys. Rev. 15, 2177 (1977).

    Article  ADS  CAS  Google Scholar 

  30. M. A. Stranick and A. Moskwa, Surf. Sci. Spectra 2, 45 (1993). https://doi.org/10.1116/1.1247723

    Article  ADS  CAS  Google Scholar 

  31. M. Patel and J. Kim, Data Brief 15, 252 (2017). https://doi.org/10.1016/j.dib.2017.09.037

    Article  PubMed  PubMed Central  Google Scholar 

  32. J. Vidal, S. Lany, M. d’Avezac, et al., Appl. Phys. Lett. 100, 032104 (2012). https://doi.org/10.1063/1.3675880

    Article  ADS  CAS  Google Scholar 

  33. I. S. Popov, N. S. Kozhevnikova, and A. N. Enyashin, et al., Dokl. Phys. Chem. 472, 23 (2017). https://doi.org/10.1134/S0012501617020026

    Article  CAS  Google Scholar 

  34. N. S. Kozhevnikova, L. N. Maskaeva, E. E. Lekomtseva, et al., Nanosyst.: Phys. Chem. Math. 11, 529 (2020).https://doi.org/10.17586/2220-8054-2020-11-5-529-536

    Article  CAS  Google Scholar 

  35. W. Li, C. F. J. Walther, A. Kuc, et al., J. Chem. Theory Comput. 9, 2950 (2013). https://doi.org/10.1021/ct400235w

    Article  CAS  PubMed  Google Scholar 

  36. E. Guneri, C. Ulutas, F. Kirmizigul, et al., Appl. Surf. Sci. 257, 1189 (2010). https://doi.org/10.1016/j.apsusc.2010.07.104

    Article  ADS  CAS  Google Scholar 

  37. K. Hartman, J. L. Johnson, M. I. Bertoni, et al., Thin Solid Films 519, 7421 (2011). https://doi.org/10.1016/j.tsf.2010.12.186

    Article  ADS  CAS  Google Scholar 

  38. N. Koteeswara Reddy, Y. B. Hahn, M. Devika, et al., J. Appl. Phys. 101, 093522 (2007). https://doi.org/10.1063/1.2729450

    Article  ADS  CAS  Google Scholar 

  39. M. Parenteau and C. Carlone, Phys. Rev. 41, 5227 (1990).

    Article  ADS  CAS  Google Scholar 

  40. L. A. Burton, D. Colombara, and R. D. Abellon, Chem. Mater. 25, 4908 (2013). https://doi.org/10.1021/cm403046m

    Article  CAS  Google Scholar 

  41. L. V. Titova, B. M. Fregoso, and R. L. Grimm, in Chalcogenide: From 3D to 2D and Beyond (Woodhead Publishing Series in Electronic and Optical Materials, 2020).

  42. F. Urbah, Phys. Rev. 92, 1324 (1953).

    Article  ADS  Google Scholar 

  43. V. I. Roldugin, Russ. Chem. Rev. 72, 931 (2003). https://doi.org/10.1070/RC2003v072n10ABEH000805

    Article  CAS  Google Scholar 

  44. N. A. Torkhov, V. G. Bozhkov, I. V. Ivonin, et al., Semiconductors 43, 33 (2009). https://doi.org/10.1134/S1063782609010084

    Article  ADS  CAS  Google Scholar 

  45. V. M. Samsonov, Yu. V. Kuznetsova, and E. V. Dyakova, Tech. Phys. 61, 227 (2016). https://doi.org/10.1134/S1063784216020201

    Article  CAS  Google Scholar 

  46. N. Yu. Sdobnyakov, A. S. Antonov, and D. V. Ivanov, Morphological Characteristics and Fractal Analysis of Metal Films on Dielectric Surfaces (Tver State Univ., Tver, 2019) [in Russian].

    Google Scholar 

  47. B. M. Smirnov, Physics of Fractal Clusters (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  48. B. M. Smirnov, Usp. Phys. Nauk 149, 177 (1986).

    Article  CAS  Google Scholar 

  49. J. Feder, Fractals (Springer New York, NY, 1988). https://doi.org/10.1007/978-1-4899-2124-6

    Book  Google Scholar 

Download references

Funding

This work was carried out in the framework of the State assignment of the Institute of Solid-State Chemistry, Ural Branch, Russian Academy of Sciences (no. AAAA-A19-119031890025-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Kozhevnikova.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by G. Kirakosyan

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozhevnikova, N.S., Maskaeva, L.N., Enyashin, A.N. et al. Low-Temperature One-Pot Synthesis of Tin(II) Sulfide Nanocrystalline Thin Films. Russ. J. Inorg. Chem. (2024). https://doi.org/10.1134/S0036023623602738

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S0036023623602738

Keywords:

Navigation