Skip to main content
Log in

Characterization of MoO3 and TixMoyOz Thin Films Prepared by Atomic Layer Deposition

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

This work involves the ex situ characterization of molybdenum oxide (MoO3) and titanium molybdenum oxide (TixMoyOz) thin films grown by atomic layer deposition (ALD) at 150°C using titanium tetrachloride (TiCl4), molybdenum oxytetrachloride (MoOCl4), and water. Atomic layer deposition of TixMoyOz was carried out in supercycles consisting of TiCl4/H2O and MoOCl4/H2O subcycles. Two types of TixMoyOz films were prepared, where the ratio of subcycles was 1 : 1 (1Ti1MoO) and 1 : 7 (1Ti7MoO). The film growth rate was determined by spectroscopic ellipsometry (SE) and X-ray reflectivity (XRR). The density and root-mean-square roughness of the films were also determined from XRR. The composition of the films was determined by X-ray photoelectron spectroscopy (XPS). The degree of oxidation of molybdenum in the MoO3 and 1Ti7MoO films was +6, and in the 1Ti1MoO film, molybdenum was found in the oxidation states of +5 and +6. X-Ray diffraction analysis (XRD) showed that the films were amorphous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. B. Goodenough, Chemistry and Uses of Molybdenum (Climax Molybdenum Corp., Colorado, 1982).

    Google Scholar 

  2. S. K. Deb, Physical Properties of a Transition Metal Oxide: Optical and Photoelectric Properties of Single Crystal and Thin Film Molybdenum Trioxide (Proc. R. SOC., London, 1968).

  3. Y. Jiang, X. Yan, Y. Cheng, et al., RSC Adv. 9, 13207 (2019). https://doi.org/10.1039/C8RA10232E

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Y. Chen, Ch. Lu, L. Xu, et al., CrystEngComm 12, 3740 (2010). https://doi.org/10.1039/C000744G

    Article  CAS  Google Scholar 

  5. L. Huang, L. Hu, R. Zhang, et al., Appl. Surf. Sci. 283, 1016 (2013). https://doi.org/10.1016/j.apsusc.2013.05.106

    Article  CAS  Google Scholar 

  6. Sh.-Yu. Lin, Ch.-M. Wang, K.-Sh. Kao, et al., J. Sol-Gel Sci. Technol. 53, 51 (2010). https://doi.org/10.1007/s10971-009-2055-6

    Article  CAS  Google Scholar 

  7. L. Mai, B. Hu, W. Chen, et al., Adv. Mater. 19, 3712 (2007). https://doi.org/10.1002/adma.200700883

    Article  CAS  Google Scholar 

  8. M. B. Rahmani, S. H. Keshmiri, J. Yu, et al., Sensor. Actuat. B 145, 13 (2010). https://doi.org/10.1016/J.SNB.2009.11.007

    Article  CAS  Google Scholar 

  9. J-g. Huang, Xu-t. Guo, B. Wang, et al., J. Spectrosc. 2015, 681850 (2015). https://doi.org/10.1155/2015/68185010

    Article  Google Scholar 

  10. H. Liu, L. Ting, Ch. Zhu, and Zh. Zhu, Sol. Energy Mater. Sol. Cells 153, 1 (2016). https://doi.org/10.1016/j.solmat.2016.04.013

    Article  CAS  Google Scholar 

  11. M. Sreedhar, J. Brijitta, I. N. Reddy, et al., Surf. Interface Anal. 50, 171 (2017). https://doi.org/10.1002/sia.6355

    Article  CAS  Google Scholar 

  12. J. Zhang, T. Huang, L. Zhang, and A. Yu, J. Phys. Chem. 118, 25300. https://doi.org/10.1021/jp506401q

  13. K. Galatsis, Y. X. Li, W. Wlodarski, et al., Sensor. Actuat. 3, 276 (2002). https://doi.org/10.1016/S0925-4005(01)01072-3

    Article  Google Scholar 

  14. A. M. Maksumova, I. M. Abdulagatov, D. K. Palchaev, et al., Russ. J. Phys. Chem. 96, 2206 (2022). https://doi.org/10.1134/S0036024422100181

    Article  CAS  Google Scholar 

  15. S. I. Kol’tsov and V. B. Aleskovskii, Proceedings of the Scientific and Technical Conference of the Leningrad Technological Institute named after Lensovet, Leningrad, Russia, 1965, p. 67.

  16. A. A. Malygin, Proceedings of the III International Seminar “Atomic Layer Deposition: Russia, 2021,” St. Petersburg, 2021, p. 13.

  17. S. M. George, Chem. Rev. 110, 111 (2010). https://doi.org/10.1021/cr900056b

    Article  CAS  PubMed  Google Scholar 

  18. E. A. Sosnov, A. A. Malkov, and A. A. Malygin, Russ. J. Appl. Chem. 94, 1022 (2021). https://doi.org/10.1134/S1070427221080024

    Article  CAS  Google Scholar 

  19. S. I. Kol’tsov, V. K. Gromov, and V. B. Aleskovskii, Proceedings of the Scientific Conference “Ellipsometry as a Surface Research Method,” Novosibirsk, 1983, p. 70.

  20. V. K. Gromov and S. I. Kol’tsov, Proceedings of the Scientific Conference “Ellipsometry as a Surface Research Method,” Novosibirsk, 1983, p. 73.

  21. S. I. Kol’tsov, A. S. Yakovlev, and L. L. Bukhalov, Po-verkhnost 5, 75 (1992).

    Google Scholar 

  22. S. Sintonen, S. Ali, O. M. E. Ylivaara, et al., J. Vac. Sci. Technol. A 32, 01A111 (2014). https://doi.org/10.1116/1.4833556

  23. D. Ishi, K. Ishikawa, M. Numazawa, et al., Appl. Phys. Express 13, 087001 (2020). https://doi.org/10.35848/1882-0786/aba7a5

    Article  ADS  CAS  Google Scholar 

  24. J. M. Jensen, A. B. Oelkers, R. Toivola, et al., Chem. Mater. 14, 2276 (2002). https://doi.org/10.1021/cm011587z

    Article  CAS  Google Scholar 

  25. E. Kokkonen, M. Kaipio, H.-E. Nieminen, et al., Rev. Sci. Instrum. 93, 01390 (2022). https://doi.org/10.1063/5.0076993

    Article  CAS  Google Scholar 

  26. P. Motamedi and K. Cadien, Appl. Surf. Sci. 315, 104 (2014). https://doi.org/10.1016/j.apsusc.2014.07.105

    Article  ADS  CAS  Google Scholar 

  27. W. M. Haynes, CRC Handbook of Chemistry and Physics (CRC, Boca Raton, 2014).

    Book  Google Scholar 

  28. V. Pershina and B. Fricke, Russ. J. Phys. Chem. 99, 144 (1995).

    CAS  Google Scholar 

  29. R. L. Puurunen and W. Vandervorst, J. Appl. Phys. 96, 7686 (2004). https://doi.org/10.1063/1.1810193

    Article  ADS  CAS  Google Scholar 

  30. J. N. Kvalvik, J. Borgersen, P.-A. Hansen, et al., J. Vac. Sci. Technol. A 38, 042406 (2020). https://doi.org/10.1116/6.0000219#suppl

    Article  CAS  Google Scholar 

  31. A. R. Mouat, A. U. Mane, J. W. Elam, et al., Chem. Mater. 28, 1907 (2016). https://doi.org/10.1021/acs.chemmater.6b00248

    Article  CAS  Google Scholar 

  32. M. Diskus, O. Nilsen, and H. Fjellva, J. Mater. Chem. 21, 705 (2011). https://doi.org/10.1039/C0JM01099E

    Article  CAS  Google Scholar 

  33. M. Mattinen, P. J. King, L. Khriachtcheva, et al., Mater. Today Chem. 9, 17 (2018). https://doi.org/10.1016/j.mtchem.2018.04.005

    Article  CAS  Google Scholar 

  34. T. Jurca, A. W. Peters, A. R. Mouat, et al., Dalton Trans. 46, 1172 (2017). https://doi.org/10.1039/C6DT03952A

    Article  CAS  PubMed  Google Scholar 

  35. M. F. J. Vos, B. Macco, N. F. W. Thissen, et al., J. Vac. Sci. Technol. A 34, 01A103 (2016). https://doi.org/10.1116/1.4930161

  36. A. I. Abdulagatov, A. M. Maksumova, D. K. Palchaev, et al., Russ. J. Appl. Chem. 94, 890 (2021). https://doi.org/10.1134/S1070427221070053

    Article  CAS  Google Scholar 

  37. A. Bertuch, G. Sundaram, M. Saly, et al., J. Vac. Sci. Technol. A 32, 01A119 (2014). https://doi.org/10.1116/1.4843595

  38. Yu. V. Plyuto, I. V. Babich, I. V. Plyuto, et al., Appl. Surf. Sci. 119, 11 (1997).

    Article  ADS  CAS  Google Scholar 

  39. J. Światowska-Mrowiecka, S. de Diesbach, V. Maurice, et al., J. Phys. Chem. C 112, 11050 (2008). https://doi.org/10.1021/jp800147f

    Article  CAS  Google Scholar 

  40. T. L. Drake and P. C. Stair, J. Vac. Sci. Technol. A 34, 051403 (2016). https://doi.org/10.1116/1.4959532

    Article  CAS  Google Scholar 

  41. I. Iatsunskyi, M. Kempiński, M. Jancelewicz, et al., Vacuum 113, 52 (2015). https://doi.org/10.1016/j.vacuum.2014.12.015

    Article  ADS  CAS  Google Scholar 

  42. T. Potlog, P. Dumitriu, M. Dobromir, et al., MSEB 4, 163 (2014). https://doi.org/10.17265/2161-6221/2014.06.004

    Article  CAS  Google Scholar 

  43. F. Larsson, J. Keller, D. Primetzhofer, et al., J. Vac. Sci. Technol., A 37, 030906 (2019). https://doi.org/10.1116/1.5092877

    Article  CAS  Google Scholar 

  44. A. J. M. Mackus and J. R. Schneider, C. MacIsaac, et al., Chem. Mater. 31, 1142 (2019). https://doi.org/10.1021/acs.chemmater.8b02878

    Article  CAS  Google Scholar 

  45. M. Coll and M. Napari, Appl. Mater. 7, 110901 (2019). https://doi.org/10.1063/1.5113656

    Article  ADS  CAS  Google Scholar 

  46. A. I. Abdulagatov, A. M. Maksumova, D. K. Palchaev, et al., Russ. J. Gen. Chem. 92, 1498 (2022). https://doi.org/10.31857/S0044460X22080182

    Article  CAS  Google Scholar 

  47. J. W. Du Mont, A. E. Marquardt, A. M. Cano, and S. M. George, ACS Appl. Mater. Interfaces 9, 10296 (2017). https://doi.org/10.1021/acsami.7b01259

    Article  CAS  PubMed  Google Scholar 

  48. T. J. Myers, A. M. Cano, D. K. Lancaster, et al., J. Vac. Sci. Technol., A 39, 021001 (2021). https://doi.org/10.1116/6.0000680

    Article  CAS  Google Scholar 

  49. J. Baltrusaitis, B. Mendoza-Sanchez, V. Fernandez, et al., Appl. Surf. Sci. 326, 151 (2015). https://doi.org/10.1016/j.apsusc.2014.11.077

    Article  ADS  CAS  Google Scholar 

  50. J. G. Choi and L. T. Thompson, Appl. Surf. Sci. 93, 143 (1996). https://doi.org/10.1063/1.370690

    Article  ADS  CAS  Google Scholar 

  51. T. A. Patterson, J. C. Carver, D. E. Leyden, and D. M. Hercules, J. Phys. Chem. 80, 1700 (1976). https://doi.org/10.1021/j100556a011

    Article  CAS  Google Scholar 

  52. S. Y. Lee, Ch. Jeon, S. H. Kim, et al., Jpn. J. Appl. Phys. 51, 031102 (2012). https://doi.org/10.1143/JJAP.51.031102

    Article  ADS  CAS  Google Scholar 

  53. J. Haeberle, K. Henkel, H. Gargouri, et al., Beilstein J. Nanotechnol. 4, 732 (2013). https://doi.org/10.3762/bjnano.4.83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. J. Park, T. Back, W. C. Mitchel, et al., Sci. Rep. 5, 14374 (2015). https://doi.org/10.1038/srep14374

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. A. M. Maksumova, I. S. Bodalev, S. I. Suleimanov, et al., Inorg. Mater 59, 369 (2023).https://doi.org/10.1134/S0020168523040052

  56. A. A. Malygin, Russ. J. Gen. Chem. 72, 575 (2002). https://doi.org/10.1023/A:1016344516638

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (Government Assignment No. FZNZ-2020-0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Abdulagatov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Fedorova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksumova, A.M., Bodalev, I.S., Abdulagatov, I.M. et al. Characterization of MoO3 and TixMoyOz Thin Films Prepared by Atomic Layer Deposition. Russ. J. Inorg. Chem. (2024). https://doi.org/10.1134/S003602362360274X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S003602362360274X

Keywords:

Navigation