Skip to main content
Log in

Electrical Properties of Co-doped LaInO3 Perovskite

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Co-doped LaInO3-based materials have been studied. Strontium-sustituted solid solutions have high conductivity values but exhibit a low level of oxygen deficiency. Mg2+ and Ca2+ ions have been selected as the B-sublattice co-dopant. Both series of the solid solutions—La0.9Sr0.1In1 – xCaxO2.95 – 0.5x and La0.9Sr0.1In1 – yMgyO2.95 – 0.5y—crystallize in orthorhombic symmetry with space group Pnma. Ionic conductivity in a dry atmosphere is determined by the transport of oxygen ions. Oxygen-ion transport in solid solutions is ~30–40% at high temperatures (T > 700°C) and increases to >80% when the temperature decreases to 400–300°C. The substitution of In3+ by Ca2+ makes it possible to increase the oxygen-ion electrical conductivity; the highest values are achieved for the compositions La0.9Sr0.1In0.95Ca0.05O2.925 and La0.9Sr0.1In0.9Ca0.1O2.9. The introduction of the Mg2+ co-dopant into the In3+ sites leads to a decrease in ionic electrical conductivity compared to La0.9Sr0.1InO2.95. The effects of changes in oxygen mobility with changes in geometric factors (cell volume, critical radius) are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. A. Buonomano, G. Barone, and C. Forzano, Energy Rep. 8, 4844 (2022). https://doi.org/10.1016/j.egyr.2022.03.171

    Article  Google Scholar 

  2. S. S. Kumar and H. Lim, Energy Rep. 8, 13793 (2022). https://doi.org/10.1016/j.egyr.2022.10.127

    Article  Google Scholar 

  3. M. D. Scovell, Int. J. Hydrogen Energy 47, 10441 (2022). https://doi.org/10.1016/j.ijhydene.2022.01.099

    Article  CAS  Google Scholar 

  4. O. Corigliano, L. Pagnotta, and P. Fragiacomo, Sustainability 14, 15276 (2022). https://doi.org/10.3390/su142215276

    Article  CAS  Google Scholar 

  5. A. I. Klyndyuk and Ya. Yu. Zhuravleva, Russ. J. Inorg. Chem. 67, 2084 (2022). https://doi.org/10.1134/S0036023622601404

    Article  CAS  Google Scholar 

  6. F. Pişkin, Russ. J. Inorg. Chem. 67, 1239 (2022). https://doi.org/10.1134/S0036023622080216

    Article  Google Scholar 

  7. E. Filonova and D. Medvedev, Nanomaterials 12, 1991 (2022). https://doi.org/10.3390/nano12121991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Z. Chen, Q. Jiang, F. Cheng, et al., J. Mater. Chem. A 7, 6099 (2019). https://doi.org/10.1039/C8TA11957K

    Article  CAS  Google Scholar 

  9. A. Y. Stroeva, V. P. Gorelov, and V. B. Balakireva, Russ. J. Electrochem. 46, 552 (2010). https://doi.org/10.1134/S1023193510070116

    Article  CAS  Google Scholar 

  10. A. V. Kuz’min, A. Yu. Stroeva, and V. P. Gorelov, Russ. J. Electrochem. 54, 43. https://doi.org/10.1134/S1023193518010056

  11. A. V. Egorova, K. G. Belova, and I. E. Animitsa, Int. J. Hydrogen Energy 48, 22685 (2023). https://doi.org/10.1016/j.ijhydene.2023.03.263

    Article  CAS  Google Scholar 

  12. M. Gambino, S. D. Tommaso, F. Giannici, et al., J. Chem. Phys. 147, 144702 (2017). https://doi.org/10.1063/1.4993705

    Article  ADS  CAS  PubMed  Google Scholar 

  13. H.-L. Kim, S. Kim, K.-H. Lee, et al., J. Power Sources 267, 723 (2014). https://doi.org/10.1016/j.jpowsour.2014.06.006

    Article  ADS  CAS  Google Scholar 

  14. P. Dhanasekaran and N. M. Gupta, Mater. Res. Bull. 47, 1217 (2012). https://doi.org/10.1016/j.materresbull.2012.01.031

    Article  CAS  Google Scholar 

  15. K. Sood, K. Singh, and O. P. Pandey, Physica B 456, 250 (2015). https://doi.org/10.1016/j.physb.2014.08.036

    Article  ADS  CAS  Google Scholar 

  16. K. Sood, K. Singh, S. Basu, et al., Ionics 21, 2839 (2015). https://doi.org/10.1007/s11581-015-1461-8

    Article  CAS  Google Scholar 

  17. H. He, X. Huang, and L. Chen, Solid State Ionics 130, 183 (2000). https://doi.org/10.1016/S0167-2738(00)00666-4

    Article  CAS  Google Scholar 

  18. H. He, X. Huang, and L. Chen, Electrochim. Acta 46, 2871 (2001). https://doi.org/10.1016/S0013-4686(01)00508-4

    Article  CAS  Google Scholar 

  19. B. Bakiz, F. Guinneton, M. Arab, et al., Adv. Mater. Sci. Eng. 2010, 360597 (2010). https://doi.org/10.1155/2010/360597

    Article  CAS  Google Scholar 

  20. R. D. Shannon, Acta Crystallogr., Sect. A: Found. Crystallogr. 32, 751 (1976). https://doi.org/10.1107/S0567739476001551

    Article  ADS  Google Scholar 

  21. S. Nishiyama, M. Kimura, and T. Hattori, Key Eng. Mater. 216, 65 (2001). https://doi.org/10.4028/www.scientific.net/KEM.216.65

  22. D. M. Smyth, Solid State Ionics 129, 5 (2000). https://doi.org/10.1016/S0167-2738(99)00312-4

    Article  CAS  Google Scholar 

  23. S. Lany and A. Zunger, Phys. Rev. B 80, 085202 (2009). https://doi.org/10.1103/PhysRevB.80.085202

    Article  ADS  CAS  Google Scholar 

  24. Ya. Dong, Yi. Huang, D. Ding, et al., Acta Mater. 203, 116487 (2021). https://doi.org/10.1016/j.actamat.2020.116487

    Article  CAS  Google Scholar 

  25. J. A. Kilner and R. J. Brook, Solid State Ionics 6, 237 (1982). https://doi.org/10.1016/0167-2738(82)90045-5

    Article  CAS  Google Scholar 

  26. A. F. Sammells, R. L. Cook, J. H. White, et al., Solid State Ionics 52, 111 (1992).

    Article  CAS  Google Scholar 

  27. Chr. Tantardini and A. R. Oganov, Nature Commun. 12, 2087 (2021). https://doi.org/10.1038/s41467-021-22429-0

  28. V. N. Voronov, Ionic Mobility and Properties of Perovskite-Type Compounds ABH (Krasnoyarsk, 2006) [in Russian].

    Google Scholar 

Download references

Funding

The study was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of the Development Program of the Ural Federal University named after the first President of Russia B.N. Yeltsin in accordance with the strategic academic leadership program “Priority 2030.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Egorova.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by G. Kirakosyan

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belova, K.G., Egorova, A.V., Pachina, S.P. et al. Electrical Properties of Co-doped LaInO3 Perovskite. Russ. J. Inorg. Chem. (2024). https://doi.org/10.1134/S0036023623602763

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S0036023623602763

Keywords:

Navigation