Skip to main content
Log in

Thermodynamic Modeling of the CVD Process in the Ni–Si–C–H System

  • PHYSICOCHEMICAL ANALYSIS OF INORGANIC SYSTEMS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Oxygen-free ceramics are promising for use in various technologies owing to their unique properties. Additions of metals or metal compounds significantly expand the application range of the ceramics. Therefore, methods for the synthesis of such composites are being actively developed. One way to manufacture such films is chemical vapor deposition (CVD). Thermodynamic modeling offers a means to choose the process parameters. In this work, thermodynamic modeling of the CVD process in the Ni–Si–C–H system, where nickelocene and silane were precursors, was carried out. The results can be useful for film materials design based on SiC and nickel-containing phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Notes

  1. The phase assemblage is the set of condensed phases in thermodynamic equilibrium.

  2. The isomers were also taken into account if existed.

  3. This system was studied in the temperature range 100–980°С because of the lack of thermodynamic data on the Ni7Si13 phase at higher temperatures.

REFERENCES

  1. A. M. Shestakov, Trudy VIAM, Ch. 1 8, 21 (2021). https://doi.org/10.18577/2307-6046-2021-0-8-21-33

  2. Hye-Rim Jeong, Tae-Hwan Huh, Byung Hyo Kim, and Young-Je Kwark, Ceram. Int. 48, 16576 (2022). https://doi.org/10.1016/j.ceramint.2022.02.202

    Article  CAS  Google Scholar 

  3. A. Idesaki and P. Colombo, Adv. Eng. Mater. 14, 1116 (2012). https://doi.org/10.1002/adem.201100354

    Article  CAS  Google Scholar 

  4. L. Friebe, K. Liu, B. Obermeier, S. Petrov, et al., Chem. Mater. 19, 2630 (2007). https://doi.org/10.1021/cm062470j

    Article  CAS  Google Scholar 

  5. M. S. Bazarjani, H.-J. Kleebe, M. M. Müller, et al., Chem. Mater. 23, 4112 (2011). https://doi.org/10.1021/cm200589n

    Article  CAS  Google Scholar 

  6. Y. Liu, Y. Feng, H. Gong, et al., J. Alloys Compd. 749, 620 (2018). https://doi.org/10.1016/j.jallcom.2018.03.346

    Article  CAS  Google Scholar 

  7. E. V. Stankevich and E. A. Tyavlovskaya, Zh. Prikl. Spektr. 77, 737 (2010).

    Google Scholar 

  8. Fanping Meng, Bo Wang, Fangfang Ge, and Feng Huang, Surf. Coat. Technol. 213, 77 (2012). https://doi.org/10.1016/j.surfcoat.2012.10.020

    Article  CAS  Google Scholar 

  9. N. Asakuma, S. Tada, E. Kawaguchi, et al., Nanomater. 12, 1644 (2022). https://doi.org/10.3390/nano12101644

    Article  CAS  Google Scholar 

  10. Yu Liu, Xiao Lin, Hongyu Gong, et al., J. Alloys Compd. 771, 356 (2019). https://doi.org/10.1016/j.jallcom.2018.08.283

    Article  CAS  Google Scholar 

  11. Yu Liu, Xiao Lin, Hongyu Gong, et al., J. Alloys Compd. 749, 620 (2018). https://doi.org/10.1016/j.jallcom.2018.03.346

    Article  CAS  Google Scholar 

  12. G. Hahn, J.-K. Ewert, C. Denner, et al., Chem. Cat. Chem. 8, 2461 (2016). https://doi.org/10.1002/cctc.201600391

    Article  CAS  Google Scholar 

  13. Zhang. Xiaofei, Chen. Lixin, Meng. Lala, et al., Ceram. Int. 40, 6937 (2014). https://doi.org/10.1016/j.ceramint.2013.12.017

  14. L. Friebe, K. Liu, B. Obermeier, et al., Chem. Mater. 19, 2630 (2007). https://doi.org/10.1021/cm062470j

    Article  CAS  Google Scholar 

  15. Farooq Aamir, Raina Ankush, Mohan. Sanjay, et al., Nanomaterials 12, 1323 (2022). https://doi.org/10.3390/nano12081323

    Article  CAS  Google Scholar 

  16. Sheikh Aamir Farooq, Ankush Raina, Sanjay Mohan et al., Nanomaterials 12, 1323 (2022). https://doi.org/10.3390/nano12081323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Seong-Don. Hwang, N. B. Remmes, P. A. Dowben, and D. N. McIlroy, J. Vac. Sci. Technol. B14, 2957 (1996). https://doi.org/10.1116/1.588942

    Article  Google Scholar 

  18. Fanping Meng, Bo Wang, Fangfang Ge, and Feng Huang, Surf. Coat. Technol. 213, 77 (2012). https://doi.org/10.1016/j.surfcoat.2012.10.020

    Article  CAS  Google Scholar 

  19. V. A. Shestakov, V. I. Kosyakov, and M. L. Kosinova, Russ. J. Inorg. Chem. 65, 898 (2020). https://doi.org/10.1134/S0036023620060212

    Article  CAS  Google Scholar 

  20. V. A. Shestakov and M. L. Kosinova, Russ. Chem. Bull., Int. Ed. 70, 283 (2021). https://doi.org/10.1007/s11172-021-3083-9

    Article  CAS  Google Scholar 

  21. V. A. Shestakov and M. L. Kosinova, Russ. J. Inorg. Chem. 66, 1703 (2021). https://doi.org/10.1134/S0036023621110152

    Article  CAS  Google Scholar 

  22. V. A. Shestakov, L. V. Yakovkina, and V. N. Kichay, Russ. J. Inorg. Chem. 67, 1956 (2022). https://doi.org/10.1134/S0036023622601179

    Article  CAS  Google Scholar 

  23. F. A. Kuznetsov, Ya. M. Buzhdan, and G. A. Kokovin, Izv. SO AN SSSR, Ser. Khim. Nauk 2, 24 (1975).

    Google Scholar 

  24. F. A. Kuznetsov and V. A. Titov, Proceedings of the International Symposium on Advanced Materials, September 24–30, 1995, Japan, p. 16.

  25. Thermodynamic Properties of Individual Substances, Ed. by V. P. Glushko (Nauka, Moscow) [in Russian].

  26. I. Barin, Termodynamical Data of Pure Substances (New York, 1989).

    Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (project No. 121031700314-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Shestakov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Fedorova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shestakov, V.A., Kosinova, M.L. Thermodynamic Modeling of the CVD Process in the Ni–Si–C–H System. Russ. J. Inorg. Chem. (2024). https://doi.org/10.1134/S0036023623602441

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S0036023623602441

Keywords:

Navigation