Skip to main content
Log in

Effect of Scandium Concentration in the Y2O3–Sc2O3–Al2O3–Er2O3 Oxide Composition on the Thermophysical Properties of Optical Ceramics

  • PHYSICOCHEMICAL ANALYSIS OF INORGANIC SYSTEMS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The influence of the concentration and position of scandium ions on the thermophysical characteristics of optical ceramics based on Y2O3–Er2O3–Sc2O3–Al2O3 oxide garnet solid solution has been studied. An increase in the total scandium concentration leads to a decrease in the thermal conductivity in the ceramics. The thermal conductivity has been determined as a function of the concentration and position of scandium ions in the garnet lattice. The decreased thermal conductivity of yttrium erbium scandium aluminum garnet (YErSAG) ceramics is due to structural disordering associated with partial substitution of cations in the six- and eight-coordinate positions in the garnet lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A. Ikesue and Y. L. Aung, Nat. Photonics 2, 721 (2008). https://doi.org/10.1038/nphoton.2008.243

    Article  ADS  CAS  Google Scholar 

  2. J.-F. Bisson, Y. Feng, A. Shirakawa, et al., Jpn. J. Appl. Phys. 42, L1025 (2003). https://doi.org/10.1143/JJAP.42.L1025

    Article  ADS  CAS  Google Scholar 

  3. J. Sanghera, S. Bayya, G. Villalobos, et al., Opt. Mater. (Amst.) 33, 511 (2011). https://doi.org/10.1016/j.optmat.2010.10.038

    Article  ADS  CAS  Google Scholar 

  4. K. E. Lukyashin and A. V. Ishchenko, Russ. J. Inorg. Chem. 66, 1203 (2021). https://doi.org/10.1134/S0036023621080131

    Article  CAS  Google Scholar 

  5. M. G. Ivanov, Y. L. Kopylov, V. B. Kravchenko, et al., Inorg. Mater. 50, 951 (2014). https://doi.org/10.1134/S0020168514090040

    Article  CAS  Google Scholar 

  6. L. S. Golovkina, A. V. Nokhrin, M. S. Boldin, et al., Inorg. Mater. 54, 1291 (2018). https://doi.org/10.1134/S002016851812004X

    Article  CAS  Google Scholar 

  7. J. Sanghera, W. Kim, G. Villalobos, et al., Materials (Basel) 5, 258 (2012). https://doi.org/10.3390/ma5020258

    Article  ADS  CAS  PubMed  Google Scholar 

  8. S. Nakamura, in Frontiers in Guided Wave Optics and Optoelectronics (2010). https://doi.org/10.5772/39540

    Book  Google Scholar 

  9. L. S. Alekseeva, A. V. Nokhrin, K. O. Karazanov, et al., Inorg. Mater. 58, 199 (2022). https://doi.org/10.1134/S0020168522020017

    Article  CAS  Google Scholar 

  10. U. Brauch, C. Röcker, T. Graf, et al., Appl. Phys. 128, 58 (2022). https://doi.org/10.1007/s00340-021-07736-0

    Article  CAS  Google Scholar 

  11. J. Carreaud, R. Boulesteix, A. Maître, et al., Opt. Mater. (Amst.) 35, 704 (2013). https://doi.org/10.1016/j.optmat.2012.07.021

    Article  ADS  CAS  Google Scholar 

  12. A. Ferrier, S. Ilas, P. Goldner, et al., J. Lumin. 194, 116 (2018). https://doi.org/10.1016/j.jlumin.2017.09.056

    Article  CAS  Google Scholar 

  13. V. A. Tarala, M. S. Shama, I. S. Chikulina, et al., J. Am. Ceram. Soc. 102, 4862 (2019). https://doi.org/10.1111/jace.16294

    Article  CAS  Google Scholar 

  14. D. M. Revenko, O. M. Chapura, E. A. Bondarenko, et al., J. Phys. Conf. Ser. 1989, 12017 (2021). https://doi.org/10.1088/1742-6596/1989/1/012017

    Article  CAS  Google Scholar 

  15. V. Y. Zhmykhov, E. A. Dobretsova, Y. N. Pyrkov, et al., Proceedings of the Internatioal Conference on Laser Optics IEEE, 2022, p. 1. https://doi.org/10.1109/ICLO54117.2022.9839777

  16. H. Okada, M. Tanaka, H. Kiriyama, et al., Opt. Lett. 35, 3048 (2010). https://doi.org/10.1364/OL.35.003048

    Article  ADS  CAS  PubMed  Google Scholar 

  17. J. Saikawa, Y. Sato, T. Taira, et al., Opt. Mater. (Amst.) 29, 1283 (2007). https://doi.org/10.1016/j.optmat.2006.01.031

    Article  ADS  CAS  Google Scholar 

  18. M. S. Nikova, V. A. Tarala, F. F. Malyavin, et al., Ceram. Int. 47, 1772 (2021). https://doi.org/10.1016/j.ceramint.2020.09.003

    Article  CAS  Google Scholar 

  19. M. S. Nikova, V. A. Tarala, F. F. Malyavin, et al., J. Eur. Ceram. Soc. 42, 1833 (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.01.008

    Article  CAS  Google Scholar 

  20. M. S. Nikova, V. A. Tarala, D. S. Vakalov, et al., J. Eur. Ceram. Soc. 39, 4946 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.07.041

    Article  CAS  Google Scholar 

  21. M. Suárez, A. Fernández, J. L. Menéndez, et al., J. Nanomater. 2009, 1 (2009). https://doi.org/10.1155/2009/138490

    Article  CAS  Google Scholar 

  22. A. S. Gandhi and C. G. Levi, J. Mater. Res. 20, 1017 (2005). https://doi.org/10.1557/JMR.2005.0133

    Article  ADS  CAS  Google Scholar 

  23. V. N. Baumer, E. A. Vovk, O. M. Vovk, et al., Funct. Mater. 15, 540 (2008).

    CAS  Google Scholar 

  24. L. Wang, H. Kou, Y. Zeng, et al., Ceram. Int. 38, 4401 (2012). https://doi.org/10.1016/j.ceramint.2012.01.055

    Article  CAS  Google Scholar 

  25. G. B. Tel’nova, T. Y. Kolomiets, A. A. Konovalov, et al., Russ. J. Inorg. Chem. 60, 127 (2015). https://doi.org/10.1134/S0036023615020187

    Article  CAS  Google Scholar 

  26. P. Palmero, C. Stella, A. Simone, et al., Glass. Phys. Chem. 31, 530 (2005). https://doi.org/10.1007/s10720-005-0094-9

    Article  CAS  Google Scholar 

  27. D. V. Bulyga, R. V. Sadovnichy, K. V. Dukelsky, et al., Glass. Phys. Chem. 48, 151 (2022). https://doi.org/10.1134/S1087659622020031

    Article  CAS  Google Scholar 

  28. E. S. Lukin, N. T. Andrianov, N. B. Mamaeva, et al., Ogneup. Tekhn. Keram. 5, 11 (1993).

    Google Scholar 

  29. K. Beil, S. T. Fredrich-Thornton, F. Tellkamp, et al., Opt. Express 18, 20712 (2010). https://doi.org/10.1364/OE.18.020712

    Article  ADS  CAS  PubMed  Google Scholar 

  30. A. A. Akl, S. A. Mahmoud, S. M. AL-Shomar, et al., Mater. Sci. Semicond. Process 74, 183 (2018). https://doi.org/10.1016/j.mssp.2017.10.007

    Article  CAS  Google Scholar 

  31. M. S. Nikova, V. A. Tarala, A. A. Kravtsov, et al., Ceram. Int. (2022). https://doi.org/10.1016/j.ceramint.2022.08.235

  32. Y. Zhou, G. Gan, Z. Ge, et al., J. Asian Ceram. Soc. 9, 629 (2021). https://doi.org/10.1080/21870764.2021.1907025

    Article  Google Scholar 

  33. X. Ping, B. Meng, C. Li, et al., J. Am. Ceram. Soc. (2022). https://doi.org/10.1111/jace.18457

  34. A. J. Wright, Q. Wang, S.-T. Ko, et al., Scr. Mater. 181, 76 (2020). https://doi.org/10.1016/j.scriptamat.2020.02.011

    Article  ADS  CAS  Google Scholar 

  35. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, et al., IEEE J. Sel. Top. Quantum Electron. 13, 448 (2007). https://doi.org/10.1109/JSTQE.2007.896602

    Article  ADS  CAS  Google Scholar 

  36. M. C. Pujol, A. Maitre, J. Carreaud, et al., J. Phys. Chem. 118, 13781 (2014). https://doi.org/10.1021/jp5027493

    Article  CAS  Google Scholar 

  37. R. Maksimov, V. Shitov, V. Osipov, et al., Opt. Mater. (Amst.) 137, 113542 (2023). https://doi.org/10.1016/j.optmat.2023.113542

    Article  CAS  Google Scholar 

  38. J. Hostaša, V. Nečina, T. Uhlířová, et al., J. Eur. Ceram. Soc. 39, 53 (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.04.018

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The facilities of the Shared Facilities Center at the North-Caucasus Federal University were used in the work.

Funding

The work was supported by the Russian Science Foundation (project No. 23-23-00084), https://rscf.ru/project/23-23-00084/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Chikulina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Fedorova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chikulina, I.S., Vakalov, D.S., Kichuk, S.N. et al. Effect of Scandium Concentration in the Y2O3–Sc2O3–Al2O3–Er2O3 Oxide Composition on the Thermophysical Properties of Optical Ceramics. Russ. J. Inorg. Chem. (2024). https://doi.org/10.1134/S0036023623602647

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S0036023623602647

Keywords:

Navigation