Skip to main content
Log in

Derivatives of (2-Carbamoylethyl)diphenylphosphine Oxides: Synthesis and Extraction Properties toward Actinides and Lanthanides

  • PHYSICAL CHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A series of (2-carbamoylethyl)diphenylphosphine oxides (CEPO) has been synthesized from commercially available reagents: chlorodiphenylphosphine and acrylamides. Effect of coordinating fragments Ph2P(O)(CH2)2C(O), nature of oligoyl group that binds these fragments, and the presence of additional coordinating centers in CEPO on extraction properties toward actinides and lanthanides has been studied. It has been found that N,N′-methylene-bis[3-(diphenylphosphoryl)propionamide] (III) containing two diphenylphosphorylpropionyl fragments bound by rigid HNCH2NH linker shows the highest efficiency in extraction of actinides (recovery extent is ∼73% for U(VI) and ~85% for Th(IV)), whereas ligand V containing the maximum number of such phosphorylcarbonyl groups in conformationally non-rigid nitrogen heterocyclic matrix and CEPO (II) containing additional C=O group in the alkyl fragment at the nitrogen atom of carbamoyl fragment exhibit considerable preference in the extraction of lanthanides (extraction of gadolinium with this compound is close to 92%). Obtained data display that highly efficient and selective extractants for both 4f and 5f elements can be constructed on the basis of (2-carbamoylethyl)diphenylphosphine oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Notes

  1. Acrylamides used in the synthesis of these ligands are also commercially available.

  2. It is the compound containing additional coordination center, carbonyl group, which showed the highest extraction ability toward Gd(III). It should be noted that considerable positive effect of additional coordination center on extraction characteristics of ligands was observed earlier also for other types of phosphorus–nitrogen compounds: phosphorylamides and phosphorylureas [3335].

REFERENCES

  1. I. G. Tananaev and B. F. Myasoedov, Radiochemistry 58, 257 (2016). https://doi.org/10.1134/S1066362216030061

    Article  CAS  Google Scholar 

  2. A. Leoncini, J. Huskens, and W. Verboom, Chem. Soc. Rev. 46, 7229 (2017). https://doi.org/10.1039/C7CS00574A

    Article  CAS  PubMed  Google Scholar 

  3. C.-Z. Wang, W.-Q. Shi, J.-H. Lan, et al., Inorg. Chem. 52, 10904 (2013). https://doi.org/10.1021/ic400895d

    Article  CAS  PubMed  Google Scholar 

  4. C.-Zh. Wang, J.-H. Lan, Yu.-L. Zhao, et al., Inorg. Chem. 52, 196 (2013). https://doi.org/10.1021/ic301592f

    Article  CAS  PubMed  Google Scholar 

  5. A. G. Matveeva, I. Yu. Kudryavtsev, M. P. Pasechnik, et al., Polyhedron 142, 71 (2018). https://doi.org/10.1016/j.poly.2017.12.025

    Article  CAS  Google Scholar 

  6. A. E. V. Gorden, M. A. DeVore II, and B. A. Maynard, Inorg. Chem. 52, 3445 (2013). https://doi.org/10.1021/ic300887p

    Article  CAS  PubMed  Google Scholar 

  7. R. Schurhammer, V. Erhart, L. Troxler, and G. Wipff, J. Chem. Soc., Perkin Trans. 2 11, 2423 (1999). https://doi.org/10.1039/A906720E

    Article  Google Scholar 

  8. M. I. Kabachnik, T. Ya. Medved’, N. M. Dyatlova, et al., Russ. Chem. Rev. 37, 503 (1968). https://doi.org/10.1070/RC1968v037n07ABEH001662

    Article  ADS  Google Scholar 

  9. T. A. Mastryukova, O. I. Artyushin, I. L. Odinets, and I. G. Tananaev, Zh. Ros. Khim. Obshch. 49, 86 (2005).

    CAS  Google Scholar 

  10. A. M. Rozen, Z. I. Nikolotova, and N. A. Kartasheva, Dokl. Akad. Nauk SSSR 222, 1151 (1975).

    CAS  Google Scholar 

  11. A. M. Rozen, Z. I. Nikolotova, and N. A. Kartasheva, Radiokhimiya 17, 237 (1975).

    CAS  Google Scholar 

  12. M. I. Kabachnik, B. F. Myasoedov, T. A. Mastryukova, and M. K. Chmutova, Izv. RAN, Ser. Khim. 11, 2624 (1996).

    Google Scholar 

  13. A. M. Rozen, Zh. Ros. Khim. Obshch. 40, 42 (1996).

    CAS  Google Scholar 

  14. A. M. Rozen and B. V. Krupnov, Russ. Chem. Rev. 65, 973 (1996). https://doi.org/10.1070/RC1996v065n11ABEH000241

    Article  ADS  Google Scholar 

  15. E. V. Sharova, O. I. Artyushin, and I. L. Odinets, Russ. Chem. Rev. 83, 95 (2014). https://doi.org/10.1070/RC2014v083n02ABEH004384

    Article  ADS  CAS  Google Scholar 

  16. P. Matveev, P. K. Mohapatra, S. N. Kalmykov, and V. Petrov, Solvent Extr. Ion Exch. 39, 679 (2021). https://doi.org/10.1080/07366299.2020.1856998

    Article  CAS  Google Scholar 

  17. T. Ya. Medved’, M. K. Chmutova, N. P. Nesterova, et al., Izv. AN SSSR, Ser. Khim. 9, 2112 (1981).

    Google Scholar 

  18. M. K. Chmutova, N. E. Kochetkova, O. E. Koiro, et al., J. Radioanal. Chem. 80, 63 (1983). https://doi.org/10.1007/BF02517648

    Article  Google Scholar 

  19. B. F. Myasoedov, M. K. Chmutova, N. E. Kochetkova, et al., Solvent Extr. Ion Exch. 4, 61 (1986). https://doi.org/10.1080/07366298608917853

    Article  CAS  Google Scholar 

  20. A. N. Turanov, V. K. Karandashev, A. N. Yarkevich, et al., Radiochemistry 44, 559 (2002).

    Article  CAS  Google Scholar 

  21. A. N. Turanov, V. K. Karandashev, A. N. Yarkevich, et al., Radiochemistry 46, 461 (2004). https://doi.org/10.1007/s11137-005-0010-0

    Article  CAS  Google Scholar 

  22. A. N. Turanov, V. K. Karandashev, and A. N. Yarke-vich, Radiochemistry 58, 338 (2016). https://doi.org/10.1134/s106636221604007x

    Article  Google Scholar 

  23. B. Coupez, C. Boehme, and G. Wipff, Phys. Chem. Chem. Phys. 4, 5716 (2002). https://doi.org/10.1039b207177k

  24. E. P. Horwitz, K. A. Martin, H. Diamond, and L. Kaplan, Solvent Extr. Ion Exch. 4, 449 (1986). https://doi.org/10.1080/07366298608917877

    Article  CAS  Google Scholar 

  25. R. C. Gatrone, L. Kaplan, and E. P. Horwitz, Solvent Extr. Ion Exch. 5, 1075 (1987). https://doi.org/10.1080/07366298708918611

    Article  CAS  Google Scholar 

  26. R. C. Gatrone, E. P. Horwitz, P. G. Rickert, and H. Diamond, Solvent Extr. Ion Exch. 7, 793 (1989). https://doi.org/10.1080/07360298908962338

    Article  CAS  Google Scholar 

  27. R. Chiarizia and E. P. Horwitz, Solvent Extr. Ion Exch. 10, 108 (1992). https://doi.org/10.1080/07366299208918094

    Article  Google Scholar 

  28. S. B. Savvin, Organic Reagents of the Arsenazo III Group (Atomizdat, Moscow, 1971) [in Russian].

    Google Scholar 

  29. A. G. Matveeva, A. V. Vologzhanina, E. I. Goryunov, et al., Dalton Trans. 45, 5162 (2016). https://doi.org/10.1039/c5dt04963f

    Article  CAS  PubMed  Google Scholar 

  30. A. M. Safiulina, N. E. Borisova, A. V. Lizunov, et al., Russ. J. Inorg. Chem. 67, 524 (2022). https://doi.org/10.1134/S0036023622040167

    Article  CAS  Google Scholar 

  31. A. G. Matveeva, M. S. Grigoriev, T. K. Dvoryanchikova, et al., Russ. Chem. Bull. 61, 399 (2012). https://doi.org/10.1007/s11172-012-0056-z

    Article  CAS  Google Scholar 

  32. K. B. Yatsimirskii, N. A. Kostromina, Z. A. Sheka, et al., Chemistry of Complex Compounds of Rare Earth Elements (Nauk. Dumka, Kiev, 1966) [in Russian].

    Google Scholar 

  33. A. M. Safiulina, O. A. Sinegribova, A. G. Matveeva, et al., Russ. J. Inorg. Chem. 57, 108 (2012). https://doi.org/10.1134/S0036023612010196

    Article  CAS  Google Scholar 

  34. A. M. Safiulina, A. V. Lizunov, I. V. Alypov, et al., Analitika 12, 340 (2022). https://doi.org/10.22184/2227-572X.2022.12.5.340.350

    Article  Google Scholar 

  35. A. M. Safiulina, N. E. Borisova, A. V. Lizunov, et al., Russ. J. Inorg. Chem. 67, 1416 (2022). https://doi.org/10.1134/S0036023622090108

    Article  CAS  Google Scholar 

  36. R. Babecki, A. W. G. Platt, and D. R. Russell, Inorg. Chim. Acta 171, 25 (1990). https://doi.org/10.1016/S0020-1693(00)84658-7

    Article  CAS  Google Scholar 

  37. S. M. Bowen, E. N. Duesler, and R. T. Paine, Inorg. Chim. Acta 61, 155 (1982). https://doi.org/10.1016/S0020-1693(00)89134-3

    Article  CAS  Google Scholar 

  38. E. V. Sharova, O. I. Artyushin, Yu. V. Nelyubina, et al., Russ. Chem. Bull. 57, 1890 (2008). https://doi.org/10.1007/s11172-008-0255-9

    Article  CAS  Google Scholar 

  39. E. I. Matrosov, E. I. Goryunov, T. V. Baulina, et al., Dokl. Chem. 432, 136 (2010). https://doi.org/10.1134/S0012500810050058

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation using equipment (NMR spectrometers) of the Center for Molecular Structure Studies, Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences.

Funding

This work was supported by the Russian Science Foundation (project no. 20-13-00329).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Safiulina.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by I. Kudryavtsev

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safiulina, A.M., Lizunov, A.V., Goryunov, E.I. et al. Derivatives of (2-Carbamoylethyl)diphenylphosphine Oxides: Synthesis and Extraction Properties toward Actinides and Lanthanides. Russ. J. Inorg. Chem. (2024). https://doi.org/10.1134/S0036023623602751

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S0036023623602751

Keywords:

Navigation