Skip to main content
Log in

Alpha-Tryptase as a Risk-Modifying Factor for Mast Cell–Mediated Reactions

  • Review
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To provide an overview on the current understanding of genetic variability in human tryptases and summarize the literature demonstrating the differential impact of mature tryptases on mast cell–mediated reactions and associated clinical phenotypes.

Recent Findings

It is becoming increasingly recognized that tryptase gene composition, and in particular the common genetic trait hereditary alpha-tryptasemia (HαT), impacts clinical allergy. HαT has consistently been associated with clonal mast cell disorders (MCD) and has also been associated with more frequent anaphylaxis among these patients, and patients in whom no allergic trigger can be found, specifically idiopathic anaphylaxis. Additionally, more severe anaphylaxis among Hymenoptera venom allergy patients has been linked to HαT in both retrospective and prospective studies. An increased relative number of α-tryptase-encoding gene copies, even in the absence of HαT, has also been associated with systemic mastocytosis and has been shown to positively correlate with the severity of mast cell–mediated reactions to vibration and food. These findings may be due to increased generation of α/β-tryptase heterotetramers and differences in their enzymatic activity relative to β-tryptase homotetramers.

Summary

HαT is a naturally occurring overexpression model of α-tryptase in humans. Increased relative α-tryptase expression modifies immediate hypersensitivity symptoms and is associated with more frequent and severe mast cell–mediated reactions, ostensibly due to increased α/β-tryptase heterotetramer production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Schwartz LB, Metcalfe DD, Miller JS, Earl H, Sullivan T. Tryptase levels as an indicator of mast-cell activation in systemic anaphylaxis and mastocytosis. N Engl J Med. 1987;316(26):1622–6.

    Article  CAS  PubMed  Google Scholar 

  2. • Maun HR, Jackman JK, Choy DF, Loyet KM, Staton TL, Jia G, et al. An allosteric anti-tryptase antibody for the treatment of mast cell-mediated severe asthma. Cell. 2019;179(2):417–31 e19. First study to demonstrate the impact of blocking human tryptase in an in vivo anaphylaxis model.

  3. Caughey GH. Tryptase genetics and anaphylaxis. J Aller Clin Immunol. 2006;117(6):1411–4.

    Article  CAS  Google Scholar 

  4. Pereira PJ, Bergner A, Macedo-Ribeiro S, Huber R, Matschiner G, Fritz H, et al. Human beta-tryptase is a ring-like tetramer with active sites facing a central pore. Nature. 1998;392(6673):306–11.

    Article  CAS  PubMed  Google Scholar 

  5. •• Le QT, Lyons JJ, Naranjo AN, Olivera A, Lazarus RA, Metcalfe DD, et al. Impact of naturally forming human alpha/beta-tryptase heterotetramers in the pathogenesis of hereditary alpha-tryptasemia. J Exp Med. 2019;216(10):2348–61. First demonstration of naturally forming heterotetrameric tryptases and their unique activities in vitro.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yu Y, Blokhuis BR, Garssen J, Redegeld FA. Non-IgE mediated mast cell activation. Eur J Pharmacol. 2016;778:33–43.

    Article  CAS  PubMed  Google Scholar 

  7. Krystel-Whittemore M, Dileepan KN, Wood JG. Mast cell: a multi-functional master cell. Front Immunol. 2015;6:620.

    PubMed  Google Scholar 

  8. Schwartz LB, Sakai K, Bradford TR, Ren S, Zweiman B, Worobec AS, Metcalfe DD. The alpha form of human tryptase is the predominant type present in blood at baseline in normal subjects and is elevated in those with systemic mastocytosis. J Clin Invest. 1995;96(6):2702–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schwartz LB, Min HK, Ren S, Xia HZ, Hu J, Zhao W, et al. Tryptase precursors are preferentially and spontaneously released, whereas mature tryptase is retained by HMC-1 cells, Mono-Mac-6 cells, and human skin-derived mast cells. J Immunol. 2003;170(11):5667–73.

    Article  CAS  PubMed  Google Scholar 

  10. Akin C, Soto D, Brittain E, Chhabra A, Schwartz LB, Caughey GH, Metcalfe DD. Tryptase haplotype in mastocytosis: relationship to disease variant and diagnostic utility of total tryptase levels. Clin Immunol. 2007;123(3):268–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aniceto V, Dias MM, Melo JML, Trevisan-Neto O, Aragon DC, Maia LSM, et al. Serum baseline tryptase level as a marker for the severity of anaphylaxis. Int Arch Aller Immunol. 2019;179(3):201–8.

    Article  CAS  Google Scholar 

  12. Enrique E, García-Ortega P, Gaig P, Richart C, Sotorra O. Usefulness of UniCAP-tryptase fluoroimmunoassay in the diagnosis of anaphylaxis. Allergy. 1999;54(6):602–6.

    Article  CAS  PubMed  Google Scholar 

  13. Schwartz LB. Diagnostic value of tryptase in anaphylaxis and mastocytosis. Immunol Aller Clin North Am. 2006;26(3):451–63.

    Article  Google Scholar 

  14. Brockow K, Jofer C, Behrendt H, Ring J. Anaphylaxis in patients with mastocytosis: a study on history, clinical features and risk factors in 120 patients. Allergy. 2008;63(2):226–32.

    Article  CAS  PubMed  Google Scholar 

  15. Gulen T, Hagglund H, Dahlen B, Nilsson G. High prevalence of anaphylaxis in patients with systemic mastocytosis - a single-centre experience. Clin Exp Aller. 2014;44(1):121–9.

    Article  CAS  Google Scholar 

  16. Greiner G, Sprinzl B, Górska A, Ratzinger F, Gurbisz M, Witzeneder N, et al. Hereditary α tryptasemia is a valid genetic biomarker for severe mediator-related symptoms in mastocytosis. Blood. 2021;137(2):238–47.

    Article  CAS  PubMed  Google Scholar 

  17. Wu R, Lyons JJ. Hereditary alpha-tryptasemia: a commonly inherited modifier of anaphylaxis. Curr Aller Asthma Rep. 2021;21(5):33.

    Article  CAS  Google Scholar 

  18. Lyons JJ, Yu X, Hughes JD, Le QT, Jamil A, Bai Y, et al. Elevated basal serum tryptase identifies a multisystem disorder associated with increased TPSAB1 copy number. Nat Genet. 2016;48(12):1564–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. •• Chovanec J, Tunc I, Hughes J, Halstead J, Mateja A, Liu Y, et al. Genetically defined individual reference ranges for tryptase limit unnecessary procedures and unmask myeloid neoplasms. Blood Adv. 2023;7(9):1796–810. First cloning of the duplicated human tryptase locus and generated a model for what the upper limit of serum tryptase levels are based upon TPSAB1 replication number.

    Article  CAS  PubMed  Google Scholar 

  20. Luskin KT, White AA, Lyons JJ. The genetic basis and clinical impact of hereditary alpha-tryptasemia. J Aller Clin Immunol Pract. 2021;9(6):2235–42.

    Article  CAS  Google Scholar 

  21. Lyons JJ, Yi T. Mast cell tryptases in allergic inflammation and immediate hypersensitivity. Curr Opin Immunol. 2021;72:94–106.

    Article  CAS  PubMed  Google Scholar 

  22. Lyons JJ. Hereditary alpha tryptasemia: genotyping and associated clinical features. Immunol Aller Clin North Am. 2018;38(3):483–95.

    Article  Google Scholar 

  23. Sperr WR, Jordan J-H, Fiegl M, Escribano L, Bellas C, Dirnhofer S, et al. Serum tryptase levels in patients with mastocytosis: correlation with mast cell burden and implication for defining the category of disease. Int Arch Aller Immunol. 2002;128(2):136–41.

    Article  CAS  Google Scholar 

  24. Haeberli G, Bronnimann M, Hunziker T, Muller U. Elevated basal serum tryptase and hymenoptera venom allergy: relation to severity of sting reactions and to safety and efficacy of venom immunotherapy. Clin Exp Aller. 2003;33(9):1216–20.

    Article  CAS  Google Scholar 

  25. Kucharewicz I, Bodzenta-Lukaszyk A, Szymanski W, Mroczko B, Szmitkowski M. Basal serum tryptase level correlates with severity of hymenoptera sting and age. J Investig Allergol Clin Immunol. 2007;17(2):65–9.

    CAS  PubMed  Google Scholar 

  26. Rueff F, Przybilla B, Bilo MB, Muller U, Scheipl F, Aberer W, et al. Predictors of severe systemic anaphylactic reactions in patients with Hymenoptera venom allergy: importance of baseline serum tryptase-a study of the European Academy of Allergology and Clinical Immunology Interest Group on Insect Venom Hypersensitivity. J Aller Clin Immunol. 2009;124(5):1047–54.

    Article  CAS  Google Scholar 

  27. Guenova E, Volz T, Eichner M, Hoetzenecker W, Caroli U, Griesinger G, et al. Basal serum tryptase as risk assessment for severe Hymenoptera sting reactions in elderly. Allergy. 2010;65(7):919–23.

    Article  CAS  PubMed  Google Scholar 

  28. Sahiner UM, Yavuz ST, Buyuktiryaki B, Cavkaytar O, Yilmaz EA, Tuncer A, Sackesen C. Serum basal tryptase may be a good marker for predicting the risk of anaphylaxis in children with food allergy. Allergy. 2014;69(2):265–8.

    Article  CAS  PubMed  Google Scholar 

  29. Srivastava S, Huissoon AP, Barrett V, Hackett S, Dorrian S, Cooke MW, Krishna MT. Systemic reactions and anaphylaxis with an acute serum tryptase ≥14 μg/L: retrospective characterisation of aetiology, severity and adherence to National Institute of Health and Care Excellence (NICE) guidelines for serial tryptase measurements and specialist referral. J Clin Pathol. 2014;67(7):614–9.

    Article  PubMed  Google Scholar 

  30. Aberer E, Savic S, Bretterklieber A, Reiter H, Berghold A, Aberer W. Disease spectrum in patients with elevated serum tryptase levels. Australas J Dermatol. 2015;56(1):7–13.

    Article  PubMed  Google Scholar 

  31. Dua S, Dowey J, Foley L, Islam S, King Y, Ewan P, Clark AT. Diagnostic value of tryptase in food allergic reactions: a prospective study of 160 adult peanut challenges. J Aller Clin Immunol Pract. 2018;6(5):1692-8.e1.

    Article  Google Scholar 

  32. • Lang A, Kubala S, Grieco MC, Mateja A, Pongracic J, Liu Y, et al. Severe food allergy reactions are associated with α-tryptase. J Aller Clin Immunol. 2023;152(4):933–9. First study to demonstrate the impact of alpha-tryptase on food allergic reaction severity.

    Article  CAS  Google Scholar 

  33. Lyons JJ, Sun G, Stone KD, Nelson C, Wisch L, O’Brien M, et al. Mendelian inheritance of elevated serum tryptase associated with atopy and connective tissue abnormalities. J Allergy Clin Immunol. 2014;133(5):1471–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lyons JJ. Inherited and acquired determinants of serum tryptase levels in humans. Ann Allergy Asthma Immunol. 2021;127(4):420–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Marquardt U, Zettl F, Huber R, Bode W, Sommerhoff C. The crystal structure of human alpha1-tryptase reveals a blocked substrate-binding region. J Mol Biol. 2002;321(3):491–502.

    Article  CAS  PubMed  Google Scholar 

  36. •• Lyons JJ, Chovanec J, O’Connell MP, Liu Y, Šelb J, Zanotti R, et al. Heritable risk for severe anaphylaxis associated with increased α-tryptase-encoding germline copy number at TPSAB1 J Allergy Clin Immunol. 2021;147(2):622-32. First study to link HaT with mastocytosis, venom allergy, and idiopathic anaphylaxis.

  37. Boyden SE, Desai A, Cruse G, Young ML, Bolan HC, Scott LM, et al. Vibratory urticaria associated with a missense variant in ADGRE2. N Engl J Med. 2016;374(7):656–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brockow K. Epidemiology, prognosis, and risk factors in mastocytosis. Immunol Aller Clin North Am. 2014;34(2):283–95.

    Article  Google Scholar 

  39. Sabato V, Van De Vijver E, Hagendorens M, Vrelust I, Reyniers E, Fransen E, et al. Familial hypertryptasemia with associated mast cell activation syndrome. J Aller Clin Immunol. 2014;134(6):1448–50 e3.

  40. Lee SE, Jeong SK, Lee SH. Protease and protease-activated receptor-2 signaling in the pathogenesis of atopic dermatitis. Yonsei Med J. 2010;51(6):808–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kawabata A, Kuroda R, Nishikawa H, Asai T, Kataoka K, Taneda M. Enhancement of vascular permeability by specific activation of protease-activated receptor-1 in rat hindpaw: a protective role of endogenous and exogenous nitric oxide. Br J Pharmacol. 1999;126(8):1856–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sprinzl B, Greiner G, Uyanik G, Arock M, Haferlach T, Sperr WR, et al. Genetic regulation of tryptase production and clinical impact: hereditary alpha tryptasemia, mastocytosis and beyond. Int J Mol Sci. 2021;22(5).

  43. Valent P, Akin C, Metcalfe DD. Mastocytosis: 2016 updated WHO classification and novel emerging treatment concepts. Blood. 2017;129(11):1420–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia. 2022;36(7):1703–19.

  45. Valent P, Akin C, Hartmann K, Alvarez-Twose I, Brockow K, Hermine O, et al. Updated diagnostic criteria and classification of mast cell disorders: a consensus proposal. Hemasphere. 2021;5(11): e646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lyons JJ, Greiner G, Hoermann G, Metcalfe DD. Incorporating tryptase genotyping into the workup and diagnosis of mast cell diseases and reactions. J Aller Clin Immunol Pract. 2022;10(8):1964–73.

    Article  CAS  Google Scholar 

  47. Chollet MB, Akin C. Hereditary alpha tryptasemia is not associated with specific clinical phenotypes. J Aller Clin Immunol. 2021.

  48. Gonzalez-de-Olano D, Navarro-Navarro P, Munoz-Gonzalez JI, Sanchez-Munoz L, Henriques A, de-Andres-Martin A, et al. Clinical impact of the TPSAB1 genotype in mast cell diseases: a REMA study in a cohort of 959 individuals. Allergy. 2023.

  49. Greiner G, Sprinzl B, Gorska A, Ratzinger F, Gurbisz M, Witzeneder N, et al. Hereditary alpha tryptasemia is a valid genetic biomarker for severe mediator-related symptoms in mastocytosis. Blood. 2020.

  50. Lyons JJ, Chovanec J, O’Connell MP, Liu Y, Selb J, Zanotti R, et al. Heritable risk for severe anaphylaxis associated with increased alpha-tryptase-encoding germline copy number at TPSAB1. J Aller Clin Immunol. 2020.

  51. Polivka L, Madrange M, Bulai-Livideanu C, Barete S, Ballul T, Neuraz A, et al. Pathophysiologic implications of elevated prevalence of hereditary alpha-tryptasemia in all mastocytosis subtypes. J Aller Clin Immunol. 2024;153(1):349–53 e4.

  52. Sordi B, Vanderwert F, Crupi F, Gesullo F, Zanotti R, Bonadonna P, et al. Disease correlates and clinical relevance of hereditary alpha-tryptasemia in patients with systemic mastocytosis. J Aller Clin Immunol. 2023;151(2):485–93 e11.

  53. Lyons JJ. On the complexities of tryptase genetics and impact on clinical phenotypes. J Aller Clin Immunol. 2021;148(5):1342–3.

    Article  CAS  Google Scholar 

  54. Sabato V, Chovanec J, Faber M, Milner JD, Ebo D, Lyons JJ. First identification of an inherited TPSAB1 quintuplication in a patient with clonal mast cell disease. J Clin Immunol. 2018;38(4):457–9.

    Article  CAS  PubMed  Google Scholar 

  55. Hamilton MJ, Zhao M, Giannetti MP, Weller E, Hufdhi R, Novak P, et al. Distinct small intestine mast cell histologic changes in patients with hereditary alpha-tryptasemia and mast cell activation syndrome. Am J Surg Pathol. 2021;45(7):997–1004.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Konnikova L, Robinson TO, Owings AH, Shirley JF, Davis E, Tang Y, et al. Small intestinal immunopathology and GI-associated antibody formation in hereditary alpha-tryptasemia. J Aller Clin Immunol. 2021;148(3):813-21.e7.

    Article  CAS  Google Scholar 

  57. Giannetti MP, Akin C, Hufdhi R, Hamilton MJ, Weller E, van Anrooij B, et al. Patients with mast cell activation symptoms and elevated baseline serum tryptase level have unique bone marrow morphology. J Aller Clin Immunol. 2021;147(4):1497-501.e1.

    Article  CAS  Google Scholar 

  58. O’Connell MP, Lyons JJ. Hymenoptera venom-induced anaphylaxis and hereditary alpha-tryptasemia. Curr Opin Aller Clin Immunol. 2020;20(5):431–7.

    Article  Google Scholar 

  59. Farioli L, Losappio LM, Schroeder JW, Preziosi D, Scibilia J, Caron L, et al. Basal tryptase levels can predict clinical severity in hymenoptera venom anaphylaxis and ischemic cardiovascular disorders. J Investig Allergol Clin Immunol. 2019;29(2):162–4.

    Article  CAS  PubMed  Google Scholar 

  60. Fellinger C, Hemmer W, Wohrl S, Sesztak-Greinecker G, Jarisch R, Wantke F. Clinical characteristics and risk profile of patients with elevated baseline serum tryptase. Allergol Immunopathol (Madr). 2014;42(6):544–52.

    Article  CAS  PubMed  Google Scholar 

  61. Bonadonna P, Perbellini O, Passalacqua G, Caruso B, Colarossi S, Dal Fior D, et al. Clonal mast cell disorders in patients with systemic reactions to Hymenoptera stings and increased serum tryptase levels. J Aller Clin Immunol. 2009;123(3):680–6.

    Article  CAS  Google Scholar 

  62. Dubois AE. Mastocytosis and Hymenoptera allergy. Curr Opin Aller Clin Immunol. 2004;4(4):291–5.

    Article  Google Scholar 

  63. • Šelb J, Rijavec M, Eržen R, Zidarn M, Kopač P, Škerget M, et al. Routine KIT p.D816V screening identifies clonal mast cell disease in patients with Hymenoptera allergy regularly missed using baseline tryptase levels alone. J Aller Clin Immunol. 2021;148(2):621–6.e7. Confirmed the association between H\({\varvec{\upalpha}}\)T and HVA severity, and showed that most individuals with clonal MCD and HVA have normal tryptase.

  64. Zanotti R, Lombardo C, Passalacqua G, Caimmi C, Bonifacio M, De Matteis G, et al. Clonal mast cell disorders in patients with severe Hymenoptera venom allergy and normal serum tryptase levels. J Allergy Clin Immunol. 2015;136(1):135–9.

    Article  CAS  PubMed  Google Scholar 

  65. Polivka L, Madrange M, Bulai-Livideanu C, Barete S, Ballul T, Neuraz A, et al. Pathophysiologic implications of elevated prevalence of hereditary alpha-tryptasemia in all mastocytosis subtypes. J Aller Clin Immunol. 2023.

  66. Bonadonna P, Zanotti R, Pagani M, Bonifacio M, Scaffidi L, Olivieri E, et al. Anaphylactic reactions after discontinuation of hymenoptera venom immunotherapy: a clonal mast cell disorder should be suspected. J Allergy Clin Immunol Pract. 2018;6(4):1368–72.

    Article  PubMed  Google Scholar 

  67. Niedoszytko M, De Monchy J, Van Doormaal JJ, Jassem E, Oude Elberink JNG. Mastocytosis and insect venom allergy: diagnosis, safety and efficacy of venom immunotherapy. Allergy. 2009;64(9):1237–45.

    Article  CAS  PubMed  Google Scholar 

  68. Bonadonna P, Gonzalez-de-Olano D, Zanotti R, Riccio A, De Ferrari L, Lombardo C, et al. Venom immunotherapy in patients with clonal mast cell disorders: efficacy, safety, and practical considerations. J Aller Clin Immunol In Pract. 2013;1(5):474–8.

  69. de Olano DG, Álvarez-Twose I, Esteban-López MI, Sánchez-Muñoz L, de Durana MDAD, Vega A, et al. Safety and effectiveness of immunotherapy in patients with indolent systemic mastocytosis presenting with Hymenoptera venom anaphylaxis. J Aller Clin Immunol. 2008;121(2):519–26.

    Article  Google Scholar 

  70. Akin C, Scott LM, Kocabas CN, Kushnir-Sukhov N, Brittain E, Noel P, Metcalfe DD. Demonstration of an aberrant mast-cell population with clonal markers in a subset of patients with “idiopathic” anaphylaxis. Blood. 2007;110(7):2331–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Carter MC, Desai A, Komarow HD, Bai Y, Clayton ST, Clark AS, et al. A distinct biomolecular profile identifies monoclonal mast cell disorders in patients with idiopathic anaphylaxis. J Aller Clin Immunol. 2018;141(1):180–8 e3.

  72. Buka RJ, Knibb RC, Crossman RJ, Melchior CL, Huissoon AP, Hackett S, et al. Anaphylaxis and clinical utility of real-world measurement of acute serum tryptase in UK Emergency Departments. J Aller Clin Immunol In Pract. 2017;5(5):1280–7.e2.

  73. Brown SGA, Stone SF, Fatovich DM, Burrows SA, Holdgate A, Celenza A, et al. Anaphylaxis: clinical patterns, mediator release, and severity. J Aller Clin Immunol. 2013;132(5):1141-9.e5.

    Article  CAS  Google Scholar 

  74. Santos AF, Du Toit G, O’Rourke C, Becares N, Couto-Francisco N, Radulovic S, et al. Biomarkers of severity and threshold of allergic reactions during oral peanut challenges. J Aller Clin Immunol. 2020;146(2):344–55.

    Article  CAS  Google Scholar 

  75. Reier-Nilsen T, Michelsen MM, Lødrup Carlsen KC, Carlsen KH, Mowinckel P, Nygaard UC, et al. Predicting reactivity threshold in children with anaphylaxis to peanut. Clin Exp Aller. 2018;48(4):415–23.

    Article  CAS  Google Scholar 

  76. Wongkaewpothong P, Pacharn P, Sripramong C, Boonchoo S, Piboonpocanun S, Visitsunthorn N, et al. The utility of serum tryptase in the diagnosis of food-induced anaphylaxis. Allergy Asthma Immunol Res. 2014;6(4):304–9.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Cetinkaya PG, Buyuktiryaki B, Soyer O, Sahiner UM, Sekerel BE. Factors predicting anaphylaxis in children with tree nut allergies. Allergy Asthma Proc. 2019;40(3):180–6.

    Article  CAS  PubMed  Google Scholar 

  78. Siles R, Xu M, Hsieh FH. The utility of serum tryptase as a marker in chronic spontaneous urticaria. Acta Derm Venereol. 2013;93(3):354–5.

    Article  PubMed  Google Scholar 

  79. Doong JC, Chichester K, Oliver ET, Schwartz LB, Saini SS. Chronic idiopathic urticaria: systemic complaints and their relationship with disease and immune measures. J Aller Clin Immunol In Pract. 2017;5(5):1314–8.

  80. Ferrer M, Nunez-Cordoba JM, Luquin E, Grattan CE, De la Borbolla JM, Sanz ML, Schwartz LB. Serum total tryptase levels are increased in patients with active chronic urticaria. Clin Exp Aller. 2010;40(12):1760–6.

    Article  CAS  Google Scholar 

  81. Hidvégi B, Nagy E, Szabó T, Temesvári E, Marschalkó M, Kárpáti S, et al. Correlation between T-cell and mast cell activity in patients with chronic urticaria. Int Arch Aller Immunol. 2003;132(2):177–82.

    Article  Google Scholar 

  82. Abonia JP, Blanchard C, Butz BB, Rainey HF, Collins MH, Stringer K, et al. Involvement of mast cells in eosinophilic esophagitis. J Aller Clin Immunol. 2010;126(1):140–9.

    Article  CAS  Google Scholar 

  83. Bolton SM, Kagalwalla AF, Arva NC, Wang MY, Amsden K, Melin-Aldana H, et al. Mast cell infiltration is associated with persistent symptoms and endoscopic abnormalities despite resolution of eosinophilia in pediatric eosinophilic esophagitis. Am J Gastroenterol. 2020;115(2):224–33.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Blatman KSH, Gonsalves N, Hirano I, Bryce PJ. Expression of mast cell–associated genes is upregulated in adult eosinophilic esophagitis and responds to steroid or dietary therapy. J Aller Clin Immunol. 2011;127(5):1307–8. e3.

  85. Reed CC, Genta RM, Youngblood BA, Wechsler JB, Dellon ES. Mast cell and eosinophil counts in gastric and duodenal biopsy specimens from patients with and without eosinophilic gastroenteritis. Clin Gastroenterol Hepatol. 2021;19(10):2102–11.

    Article  CAS  PubMed  Google Scholar 

  86. Janarthanam R, Bolton SM, Wechsler JB. Role of mast cells in eosinophilic esophagitis. Curr Opin Gastroenterol. 2022;38(6):541–8.

    Article  CAS  PubMed  Google Scholar 

  87. Aceves SS, Chen D, Newbury RO, Dohil R, Bastian JF, Broide DH. Mast cells infiltrate the esophageal smooth muscle in patients with eosinophilic esophagitis, express TGF-β1, and increase esophageal smooth muscle contraction. J Aller Clin Immunol. 2010;126(6):1198-204.e4.

    Article  CAS  Google Scholar 

  88. Dellon ES, Chen X, Miller RC, Fritchie KJ, Rubinas TC, Woosley JT, Shaheen NJ. Tryptase staining of mast cells may differentiate eosinophilic esophagitis from gastroesophageal reflux disease. Am J Gastroenterol. 2011;106(2):264–71.

    Article  CAS  PubMed  Google Scholar 

  89. Dellon ES, Peterson KA, Murray JA, Falk GW, Gonsalves N, Chehade M, et al. Anti-Siglec-8 antibody for eosinophilic gastritis and duodenitis. N Engl J Med. 2020;383(17):1624–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kutty GR, Downs-Kelly E, Crispin HT, Peterson KA. Elevated tryptase in EoE is an independent phenomenon associated with extra-esophageal symptoms. Dig Dis Sci. 2019;64(1):152–7.

    Article  CAS  PubMed  Google Scholar 

  91. Glover SC, Carter MC, Korošec P, Bonadonna P, Schwartz LB, Milner JD, et al. Clinical relevance of inherited genetic differences in human tryptases. Ann Aller Asthma Immunol. 2021;127(6):638–47.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

HS and JJL both conceived, authored, edited, and reviewed this manuscript.

Corresponding author

Correspondence to Jonathan J. Lyons.

Ethics declarations

Competing Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, H., Lyons, J.J. Alpha-Tryptase as a Risk-Modifying Factor for Mast Cell–Mediated Reactions. Curr Allergy Asthma Rep 24, 199–209 (2024). https://doi.org/10.1007/s11882-024-01136-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-024-01136-y

Keywords

Navigation