Skip to main content
Log in

Plasma Electrolytic Oxidation of Aluminum-Calcium Binary Alloys in a Cast Condition

  • Published:
Metallurgist Aims and scope

In this work specimens of binary Al–Ca alloys containing 1, 3, 6 wt.% Ca are produced in a cast condition. The effect of the calcium content on coating structure and properties formed by plasma electrolytic oxidation is studied. The coatings obtained are studied by microstructural analysis, X-ray diffraction, and microhardness is determined by the Vickers method. There is an increase in coating thickness with an increase in alloy calcium content. Coating internal porosity increases with increasing amount of Ca in Al. According to element distribution maps and graphs over the cross section there is an inner layer characterized by almost uniform distribution of aluminum and oxygen, while the outer layer contains an extensive silicon and calcium region. In addition, calcium content in the outer layer of a coating increases in proportion to its content within the alloy. Results of X-ray phase analysis reveal α -Al2O3, γ-Al2O3 and a certain proportion of amorphous phase within a coating composition. An increase in calcium content in the alloy leads to a significant change in phase composition of a coating (α-Al2O3/g-Al2O3), preventing formation of α -Al2O3. The change in phase composition and suppression of α -Al2O3 phase formation contributes to a significant reduction in coating average microhardness from 970 HV formed on Al1Ca alloy to 744 HV for a coating formed on Al6Ca alloy. Using the example of binary aluminum-calcium alloys Al1Ca (28 HV), Al3Ca (36 HV), Al6Ca (56 HV) in the as-cast state, the possibility of a significant increase in surface hardness up to 512–1197 HV due to the formation of coatings by plasma electrolytic oxidation is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N. A. Belov, E. A. Naumova, and T. K. Akopyan, Eutectic Alloys Based upon Aluminum: New Alloy Systems [in Russian] Ruda i Metally, Moscow (2016).

  2. P. K. Shurkin, N. A. Belov, A. F. Musin, and M. E. Samoshina, “Effect of calcium and silicon on the character of solidification and strengthening of the Al–8%Zn–3%Mg alloy,” Physics of Metals and Metallography, 121, No. 2, 135–142 (2020); DOI:https://doi.org/10.1134/S0031918X20020155.

    Article  CAS  Google Scholar 

  3. P. K. Shurkin, N. A. Belov, A. F. Musin, and A. A. Aksenov, “Novel high-strength casting Al–Zn–Mg–Ca–Fe aluminum alloy without heat treatment,” Russian J. of Non-Ferrous Metals, 61, 179–187 (2020); DOI: https://doi.org/10.3103/S1067821220020121.

    Article  Google Scholar 

  4. T. K. Akopyan, N. V. Letyagin, and N. N. Avxentieva, “Hightech alloys based on Al–Ca–La(–Mn) eutectic system for casting, metal forming and selective laser melting,” Non-Ferrous Metals, No. 1, 52–59 (2020); DOI: https://doi.org/10.17580/nfm.2020.01.09.

    Article  Google Scholar 

  5. T. K. Akopyan, N. V. Letyaginm T. A. Sviridova, N. O. Korotkova, and A. S. Prosviryakov, “ New casting alloys based on the Al+Al4(Ca,La) eutectic,” JOM, 72, 3779–3786 (2020); DOI: https://doi.org/10.1007/s11837-020-04340-z.

  6. N. A. Belov, E. A. Naumova, V. D. Ilyukhin, and V. V. Doroshenko, “Structure and mechanical properties of Al–6%Ca–1%Fe alloy foundry goods, obtained by die casting,” Tsvetnye Metally, No. 3, 69–75 (2017); DOI: https://doi.org/10.17580/tsm.2017.03.11.

    Article  CAS  Google Scholar 

  7. D. Fokin, S. Matveev, R. Vakhromov, and A. Alabin, “ Effect of alloying elements on strength properties and casting properties of corrosion resistant quench-free Al–Ca Alloys,” Light Metals, 113–118 (2022).

  8. N. V. Letyagin, A. F. Musin, and L. S. Sichev, “New aluminium-calcium casting alloys based on secondary raw materials,” Materials Today: Proceedings, 38, 1551–1555 (2021); DOI: https://doi.org/10.1016/j.matpr.2020.08.148.

    Article  CAS  Google Scholar 

  9. P. K. Shurkin, N. V. Letyagin, A. I. Yakushkova, M. E. Samoshina, D. Yu. Ozherelkov, and T. K. Akopyan, “Remarkable thermal stability of the Al–Ca–Ni–Mn alloy manufactured by laser powder bed fusion,” Mater. Lett., 285, 129074 (2021); DOI: https://doi.org/10.1016/j.matlet.2020.129074.

    Article  CAS  Google Scholar 

  10. N. A. Belov, E. A. Naumova, T. K. Akopyan, and V. V. Doroshenko, “Phase diagram of Al–Ca–Mg–Si system and its application for the design of aluminum alloys with high magnesium Content,” Metals, 7, 429 (2017); DOI:https://doi.org/10.3390/met7100429.

    Article  Google Scholar 

  11. O. V. Volkova, A. V. Dub, A. G. Rakoch, A. A. Gladkova, and M. E. Samoshina, “Comparison of pitting corrosion tendency for castings made of Al6Ca, Al1Fe, Al6Ca1Fe experimental alloys and AK12M2 industrial alloy,” Izvestiya Vuzov. Tsvetnaya Metallurgiya, No. 5, 75–81 (2017); DOI: https://doi.org/10.17073/0021-3438-2017-5-75-81.

    Article  Google Scholar 

  12. Y. Li, A. Hu, Y. Fu, S. Liu, W. Shen, H. Hu, and X. Nie, “Al alloys and casting processes for induction motor applications in batterypowered electric vehicles: a rev.,” Metals, 12, 216 (2022); DOI: https://doi.org/10.3390/met12020216.

    Article  CAS  Google Scholar 

  13. D. Ashkenazi, “ How aluminum changed the world: A metallurgical revolution through technological and cultural perspectives,” Technological Forecasting and Social Change, 143, 101–113 (2019); DOI: https://doi.org/10.1016/j.techfore.2019.03.011.

    Article  Google Scholar 

  14. A. T. Kermanidis, “Aircraft aluminum alloys: Applications and future trends,” in: Revolutionizing Aircraft Materials and Processes (2020); DOI: 14 https://doi.org/10.1007/978-3-030-35346-9_2.

  15. A. G. Rakoch, A. A. Gladkova, and A. V. Dub, Plasma Electrolytic Treatment of Aluminum and Titanium Alloys [in Russian] Publ. MISiS (2017).

  16. L. Zhu, Z. Guo, Y. Zhang, Z. Li, and M. Sui, “A mechanism for the growth of a plasma electrolytic oxide coating on Al,” Electrochim. Acta, 208, 296–303 (2016); DOI: https://doi.org/10.1016/j.electacta.2016.04.186.

    Article  CAS  Google Scholar 

  17. A. E. Gulec, Y. Gencer, and M. Tarakci, “The characterization of oxide based ceramic coating synthesized on Al–Si binary alloys by microarc oxidation,” Surf. Coat. Technol., 269, 100–107 (2015); DOI: https://doi.org/10.1016/j.surfcoat.2014.12.031.

    Article  CAS  Google Scholar 

  18. K. A. Cosan, K. O. Gunduz, M. Tarakci, and Y. Gencer, “Plasma electrolytic oxidation of as-cast and heat-treated binary Al–Ni alloys,” Surf. Coat. Technol., 450, 128998 (2020); DOI: https://doi.org/10.1016/j.surfcoat.2022.128998.

    Article  CAS  Google Scholar 

  19. S. Cengiz, “Synthesis of eutectic Al–18Ce alloy and effect of cerium on the PEO coating growth,” Mater. Chem. Phys., 247, 122897 (2020); DOI: 10.1016/j.matchemphys.2020.122897.

    Article  CAS  Google Scholar 

  20. S. Cengiz, M. Tarakci, Y. Gencer, A. O. Devecili, and Y. Azakli, “Oxide based ceramic coating on Al–4Cu alloy by microarc oxidation,” Acta Physica Polonica A, 123, 445–448 (2013); DOI: https://doi.org/10.12693/APhysPolA.123.445.

  21. Y. Gencer and A. E. Gulec, “The effect of Zn on the microarc oxidation coating behavior of synthetic Al–Zn binary alloys,” J. Alloys Compd., 525, 159–165 (2012); DOI: https://doi.org/10.1016/j.jallcom.2012.02.094.

    Article  CAS  Google Scholar 

  22. Z. C. Oter, Y. Gencer, and M. Tarakci, “The characterization of the coating formed by Microarc oxidation on binary Al–Mn alloys,” J. Alloys Compd., 650, 185–192 (2015); DOI: https://doi.org/10.1016/j.jallcom.2015.06.080.

    Article  CAS  Google Scholar 

  23. M. Tarakci, “Plasma electrolytic oxidation coating of synthetic Al–Mg binary alloys,” Mater. Charact., 62, 1214–1221 (2011); DOI: https://doi.org/10.1016/j.matchar.2011.10.010.

    Article  CAS  Google Scholar 

  24. T. Wu, C. Blawerta, and M. L. Zheludkevich, “Influence of secondary phases of AlSi9Cu3 alloy on the plasma electrolytic oxidation coating formation process,” J. Mater. Sci. Technol., 50, 75–85 (2020); DOI: https://doi.org/10.1016/j.jmst.2019.12.031.

    Article  CAS  Google Scholar 

  25. A. B. Rogov, H. Lyu, A. Matthews, and A. Yerokhin, “AC plasma electrolytic oxidation of additively manufactured and cast AlSi12 alloys,” Surf. Coat. Technol., 399, 126116 (2020); DOI: https://doi.org/10.1016/j.surfcoat.2020.126116.

    Article  CAS  Google Scholar 

  26. K. Li, W. Li, G. Zhang, W. Zhu, F. Zheng, D. Zhang, and M. Wang, “Effects of Si phase refinement on the plasma electrolytic oxidation of eutectic Al–Si alloy,” J. Alloys Compd., 790, 650–656 (2019); DOI: https://doi.org/10.1016/j.jallcom.2019.03.217.

    Article  CAS  Google Scholar 

  27. N. V. Letyagin, A. A. Sokorev, V. N. Kokarev, A. S. Shatrov, A. G. Tsydenov, A. S. Finogeev, A. F. Musin, and M. I. Petrzhik, “The comparative characteristics of the structure and functional properties of coatings formed on aluminum alloys 2xxx and 7xxx series by the method of plasma electrolytic oxidation,” Phys. Met. Metallogr., 124, No. 2, 238–244 (2023); DOI: https://doi.org/10.1134/S0031918X23700138.

    Article  CAS  Google Scholar 

  28. Y.-J. Oh, J.-I. Mun, and J.-H. Kim, “ Effects of alloying elements on microstructure and protective properties of Al2O3 coatings formed on aluminum alloy substrates by plasma electrolysis,” Surf. Coat. Technol., 204, 141–148 (2009); DOI: https://doi.org/10.1016/j.surfcoat.2009.07.002.

    Article  CAS  Google Scholar 

  29. L. Pezzato, M. Dabala, S. Gross, and K. Brunelli, “Effect of microstructure and porosity of AlSi10Mg alloy produced by selective laser melting on the corrosion properties of plasma electrolytic oxidation coatings,” Surf. Coat. Technol., 404, 126477 (2020); DOI: https://doi.org/10.1016/j.surfcoat.2020.126477.

    Article  CAS  Google Scholar 

  30. C. Liu, Q. Wang, X. Cao, L. Cha, R. Ye, and C. S. Ramachandran, “Significance of plasma electrolytic oxidation treatment on corrosion and sliding wear performances of selective laser melted AlSi10Mg alloy,” Mater Charact., 181, 111479 (2021); DOI: https://doi.org/10.1016/j.matchar.2021.111479.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Letyagin.

Additional information

Translated from Metallurg, Vol. 67, No. 9, pp. 64–70, September, 2023, Russian https://doi.org/10.52351/00260827_2023_09_64

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Letyagin, N.V., Akopyan, T.К., Sokorev, A.A. et al. Plasma Electrolytic Oxidation of Aluminum-Calcium Binary Alloys in a Cast Condition. Metallurgist 67, 1325–1333 (2024). https://doi.org/10.1007/s11015-024-01624-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11015-024-01624-6

Keywords

Navigation