Skip to main content
Log in

Decarbonization of Exhaust Gases of Industrial Metallurgical Furnaces

  • Published:
Metallurgist Aims and scope

This study aims to solve the problem of decarbonization of industrial emissions from metallurgical furnaces using the process of carbothermic reduction of silicon in ore-thermal furnaces (OTFs) as an example. The methods used for cleaning the exhaust gases cannot completely ensure the processing of carbonaceous emissions. We propose a method of using conversion-type gasifiers for carbon reduction when processing combustion products of exothermic reactions in metallurgical units. Computational fluid dynamics and mathematical modeling are applied to confirm the feasibility of the proposed solution. As part of the scientific problem of decarbonization associated with reducing the carbon footprint, the thermodynamic processes in changing the dust–gas medium composition based on the solution of fundamental principles related to the modification of the Bell–Boudouard equation have been analyzed. Consequently, the calculated value of the carbon dioxide flow rate can become the initial parameter for the calculation model of a conversion gasifier for an OTF in the production of metallurgical-grade silicon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. V. S. Litvinenko, P. S. Tsvetkov, M. V. Dvoinikov, and G. V. Buslaev, “Obstacles to the implementation of hydrogen initiatives in the context of sustainable development of global energy industry,” Zap. Gorn. Inst., No. 244, 428–438 (2020); DOI: https://doi.org/10.31897/pmi.2020.4.5.

  2. V. A. Umnov, O. S. Korobova, and A. A. Skryabina, “Carbon footprint as an indicator of the impact of the economy on the climate system,” Vest. RGGU. Ser. Ekon. Upravl.. Pravo, No. 2, 87–93 (2020); DOI: https://doi.org/10.28995/2073-6304-2020-2-85-93.

  3. V. S. Litvinenko, E. I. Petrov, D. V. Vasilevskaya, A. V. Yakovenko, I. A. Naumov, and M. A. Ratnikov, “Assessing the role of the state in the management of mineral resources,” Zap. Gorn. Inst., No. 259, 1–17 (2022); DOI: https://doi.org/10.31897/PMI.2022.100.

  4. G. Saevarsdottir, T. Magnusson, and H. Kvande, “Reducing the carbon footprint: primary production of aluminum and silicon with changing energy systems,” J. Sustain. Metallurgy, 7, 848–857 (2021); DOI: https://doi.org/10.1007/s40831-021-00429-0.

    Article  Google Scholar 

  5. L. Yu. Gileva, L. I. Kaplun, and S. A. Zagainov, Metallurgy of Cast Iron, Textbook, edited by S. A.Zagainov, Izdatel’stvo Uralskogo Univ., Yekaterinburg (2021).

  6. P. A. Petrov, A. K. Shestakov, and M. Yu. Nikolaev, “Collection and processing of data from an aluminum electrolyzer using a multifunctional breakdown device and a technical vision system,” Tsvetn. Metally, No. 4, 45–53 (2023); DOI: https://doi.org/10.17580/tsm.2023.04.06.

    Article  CAS  Google Scholar 

  7. N. N. Yashalova, V. S. Vasiltsov, and I. M. Potravny, “Decarbonization of ferrous metallurgy: aims and regulatory tools,” Chern. Metallurg., No. 8, 45–56 (2020).

  8. B. Andrea, M. Tangstad, and E. Ringdalen, “Characterization of a Si–SiO2 mixture generated from SiO(g) and CO(g),” Metall. Mater. Trans., 50, No. 6, 1–14 (2019); DOI: https://doi.org/10.1007/s11663-019-01678-x (4 citations).

    Article  Google Scholar 

  9. J. Prammer, “Decarbonization as more than a technological challenge,” Chern. Metally, No. 1, 55–59 (2019).

    Google Scholar 

  10. R. Boddula et al. (editors), Carbon Dioxide Utilization to Sustainable Energy and Fuels, Springer Nature; DOI: https://doi.org/10.1007/978-3-030-72877-9.

  11. M. A. Vasilyeva, A. A. Volchikhina, and M. D. Morozov, “Equipment and technologies for performing works on additional filling of mined-out space,” GIAB. Gorn. Inform.-Analitich. Bull., No. 6, 133–144 (2021).

  12. A. Grushevenko, Modeling Decarbonization and Adaptation Scenarios: the Role in Making Political and Economic Decisions [in Russian], Skolkovo, Moscow (2021).

    Google Scholar 

  13. N. Tan, H. Li, Z. Ding, K. Wei, W. Ma, D. Wu, and S. Han, “Hydrogen generation during the purification of metallurgical-grade silicon,” Int. J. Hydrog. Energy (2020); DOI: 10.1016/j. ijhydene.2020.10.117.

    Article  Google Scholar 

  14. C. Sindland, M. Tangstad, “Production rate of SiO gas from industrial quartz and silicon,” Metall. Mater. Trans. B: Proc. Metall. Mater. Proc. Sci., 3, 52 (2021); DOI:https://doi.org/10.1007/s11663-021-02143-4.

    Article  CAS  Google Scholar 

  15. V. A. Shpenst, A. A. Belsky, and E. A. Orel, “Increasing the energy efficiency of an autonomous electrical complex with renewable energy sources based on adaptive adjustment of operating modes,” Zap. Gorn. Inst., 261, 479–492 (2023).

    Google Scholar 

  16. G. Zhang, Y. Sun, Y. Xu, and R. Zhang, “Catalytic performance of N-doped activated carbon supported cobalt catalyst for carbon dioxide reforming of methane to synthesis gas,” J. Taiwan Inst. Chem. Eng., 93, 234–244 (2018); DOI: https://doi.org/10.1016/j.jtice.2018.07.016.

    Article  CAS  Google Scholar 

  17. A. Boikov, V. Payor, “The present issues of control automation for levitation metal melting,” Symmetry, 14, 1968 (2022); DOI: https://doi.org/10.3390/sym14101968.

    Article  Google Scholar 

  18. P. A. Ralnikov, N. A. Abaimov, and A. F. Ryzhkov, “Numerical study of the process of continuous gasification of coal in an - environment,” in: Proc. of VII Rus. Nat. Conf. on Heat Exchange (2018), pp. 447–450.

  19. E. Hajidavalloo, M. Rezaei, and A. G. Mombeni, “Simulation of flow and heat transfer in the duct elbow of an electric arc furnace,” Processes, 11, No. 8, 1432 (2020); DOI: https://doi.org/10.3390/pr8111432.

    Article  CAS  Google Scholar 

  20. A. A. Kulchitsky, O. K. Mansurova, and M. Yu. Nikolaev, “Recognition of defects in lifting ropes of metallurgical equipment by the optical method using neural networks,” Chern. Metally, No. 3, 81–88 (2023); DOI: https://doi.org/10.17580/chm.2023.03.13.

    Article  Google Scholar 

  21. E. R. Fedorova, E. A. Pupysheva, and V. V. Morgunov, “Determination of sedimentation parameters during thickening and washing of red mud,” Tsvetn. Metally, No. 4, 77–84 (2023); DOI: https://doi.org/10.17580/tsm.2023.04.10.

    Article  CAS  Google Scholar 

  22. A. Reimann, T. Hay, T. Echterhof, M. Kirschen, and H. Pfeifer, “Application and evaluation of mathematical models for prediction of the electric energy demand using plant data of five industrial-size EAFs,” Metals, 11, No. 9, 1348 (2021); DOI: https://doi.org/10.3390/met11091348.

    Article  CAS  Google Scholar 

  23. N. V. Nemchinova, A. A. Tyutrin, Yu. V. Sokolnikova, and T. T. Fereferova, “Analytical investigations of silicon production raw materials and products,” J. Sib. Fed. Univ. Chem., 10, No. 1, 37–48 (2017)

    Article  Google Scholar 

  24. N. V. Nemchinova, G. G. Mineev, A. A. Tyutrin, and A. A. Yakovleva, “Utilization of dust from silicon production,” Steel Trans., 47, No. 12, 763–766 (2017).

    Article  Google Scholar 

  25. I. Kero, A. Blom, and R. B. Jorgensen, “Particle size distributions of airborne particulate matter in a ferrosilicon smelter,” in: Infacon XVI: Intern. Ferro-Alloys Congr., September (2021); DOI: https://doi.org/10.2139/ssrn.3927700.

  26. N. T. Thao, K. U. Chiang, H. P. Wan, W. C. Hung, and C. F. Liu, “Enhanced trace pollutants removal efficiency and hydrogen production in rice straw gasification using hot gas cleaning system,” Int. J. Hydrog. Energy, 44, No. 6 (2018); DOI: https://doi.org/10.1016/j.ijhydene.2018.07.133.

  27. M. Moskal, P. Migas, and M. Karbowniczek, “Multi-parameter characteristics of electric arc furnace melting,” Materials, 15, No. 4, 1601 (2020); DOI: https://doi.org/10.3390/ma15041601.

    Article  CAS  Google Scholar 

  28. J. Tang, Ms. Chu, F. Li et al., “Development and progress on hydrogen metallurgy,” Int. J. Miner Metall Mater., 27, 713–723 (2020). https://doi.org/10.1007/s12613-020-2021-4.

  29. R. B. Jørgensen, I. Kero, A. Blom, E. E. Grove, and K. Svendsen, “Exposure to ultrafine particles in the ferroalloy industry using a logbook method,” Nanomaterials, 10, No. 12, 2546 (2020); DOI: https://doi.org/10.3390/nano10122546

    Article  CAS  Google Scholar 

  30. A. K. Shestakov, P. A. Petrov, and M. Y. Nikolaev, “Automatic system for detecting visible emissions in a potroom of aluminum plant based on technical vision and a neural network,” Metallurgist, 66, 1308–1319 (2022); DOI: https://doi.org/10.1007/s11015-023-01445-z.

    Article  CAS  Google Scholar 

  31. M. S. Tepina, N. V. Gorlenko, and M. A. Murzin, “Analyzing the impact of dust emissions from metallurgical enterprises on the environment,” IOP Conf. Ser. Earth Environ. Sci., 988, No. 2, 022063 (2022); DOI: https://doi.org/10.1088/1755-1315/988/2/022063.

  32. S. P. Eronko et al., “Improving the design and model studies of the operation of the gas exhaust system of an electric arc furnace in a foundry,” Izv. Chern. Metallurg,, 1, No. 62, 34–41 (2019); DOI:https://doi.org/10.17073/0368-0797-2019-1-34-41.

    Article  Google Scholar 

  33. S. M. Karabanov et al., “Approaches to the development of environmentally friendly and resource-saving technology for solar-grade silicon production,” MRS Advances, 35, 4 (2019); DOI: https://doi.org/10.1557/adv.2019.311.

    Article  CAS  Google Scholar 

  34. A. S. Simakov, M. E. Trifonova, and D. V. Gorlenkov, “Virtual analyzer of the voltage and current spectrum of the electric arc in electric arc furnaces,” Russ. Metall. (Metally), 6, 713–719 (2021); DOI: https://doi.org/10.1134/S0036029521060252.

    Article  Google Scholar 

  35. I. S. Gordeeva, E. G. Necheporenko, “Development of a new scheme for the use of heat in the process of dry quenching coke in order to save energy,” IOP Conf. Ser.: Mater. Sci., 791(1): 012010 (2020); DOI: https://doi.org/10.1088/1757-899X/791/1/012010.

  36. O. A. Dubovikov, I. I. Beloglazov, and A. A. Alekseev, “Aspects of the use of pulverized coal fuel in combined processes of chemical enrichment,” Obogashch. Rud, No. 6, 32–38 (2022); DOI: rudmet.ru/journal/2171/article/36062.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Bazhin.

Additional information

Translated from Metallurg, Vol. 67, No. 9, pp. 121–128, September, 2023. Russian DOI https://doi.org/10.52351/00260827_2023_09_121.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazhin, V.Y., Masko, O.N. & Nikitina, L.N. Decarbonization of Exhaust Gases of Industrial Metallurgical Furnaces. Metallurgist 67, 1407–1417 (2024). https://doi.org/10.1007/s11015-024-01632-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11015-024-01632-6

Keywords

Navigation